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Safety of Nuclear Power Plants

EPR, GIF, HTR, ,

Generation I to Generation IV
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EPR Overall Safety Philosophy

 These objectives, motivated by the continuous search for a 
hi h f t l l i l i f d li ti f thhigher safety level, involve reinforced application of the 
defense in depth concept:
 by improving the preventive measures in order to further reduce the 

probability of core melt, and
 by simultaneously incorporating, right from the design stage, 

measures for limiting the consequences of a severe accident.
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EPR Plant Parameter

 Thermal power 4250/4500 MW

 Electrical power 1600 MW

 Efficiency 36%

 No. of primary loops 4

 No of fuel assemblies 241

 Burnup > 60 GWd/t

 Secondary pressure 78 bar

 Seismic level 0.25 g

 Service live 60 years
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Risk Reduction – EPR Approach

Reinforced protection in the unlikely event of core meltdown
 Preventive features include safety devices which further reduce the probability y p y

of a severe accident
 enlarged water inventory of the main primary system and of the steam 

generators; increased reliability of safety systems through
 4-fold 100% redundancy (4-train concept);
 use of diversified technologies for each train of these systems.

 Features to mitigate the consequences of such an event:
 the extremely robust, leaktight containment around the reactor is designed 

to prevent radioactivity from spreading outside;
 the arrangement of the blockhouses inside the containment and hydrogen the arrangement of the blockhouses inside the containment and hydrogen 

catalytic recombiners (passive devices) prevent the accumulation of 
hydrogen and the risk of deflagration;

 molten core escaping from the reactor vessel would be passively collected 
and retained, then cooled in a specific area inside the reactor containment 
building (“core catcher”)

Enhanced protection against external hazards
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EPR – Safety Systems
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EPR Safety Injection / Residual Heat Removal (SIS/RHRS)
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Risk Reduction - EPR Containment

The unique building housing the reactor is extremely robust. It rests on a 6 
m thick concrete base mat and is enclosed by a double shell: the inner is 
made of leaktight, prestressed concrete and the outer one of reinforced 
concrete, each 1.30 m thick. This total to 2.60 m concrete thickness, 
capable of withstanding external hazards such as an aircraft crash.
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EPR Core Catcher

Even in the event of the core melting, and piercing then escaping from 
the steel reactor vessel in which it is housed, it would be contained in a 
dedicated spreading compartment. This compartment is then cooled to 
remove the residual heat.
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EPR Containment Heat Removal System
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Generation IV International Forum (GIF)

 To meet future energy needs, ten countries have agreed 
f k f i t ti l ti i h fon a framework for international cooperation in research for 

an advanced generation of nuclear energy systems, known 
as Generation IV.

 Euratome joined as 11th full member;
Switzerland joined in February of 2002
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Generation IV – Overall Goals

 Development of one or more nuclear energy systems

 Deployable by 2030

 With significant advances in:
 Sustainability
 Safety and reliability
 Proliferation and physical protection
 Economics

 Competitive in various markets Competitive in various markets

 Designed for different applications:
Electricity, Hydrogen, Clean water, Heat
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Generation IV Initiative – Aims (1/2)

Nuclear energy-systems including fuel cycles of the 4th 
ti h ldgeneration should ...

SR-1 ... be excellent regarding safety and reliability while in 
operation.

SR-2 ... have very low core damage frequency and little 
consequences.

SR-3 ... eliminate the need for emergency planning outside of g y g
the plant.

EC-1 ... clear lifecycle-cost advantages over other energy 
sources.

EC-2 ... comparable financial risk to other energy projects.
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Generation IV Initiative – Aims (2/2)

Nuclear energy-systems including fuel cycles of the 4th generation 
shouldshould ...

SU-l ... produce sustainable energy, following regulations for air 

pollution prevention and enhancing the long term availability 

of the system and efficient usage of fuel.

SU-2 ... minimise the nuclear waste and disposing it, especially they 

will reduce administration efforts on a long term scale and g

hence improve the protection of health and environment.

SU-3 ... increase the certainty that they are an undesirable and 

difficult source to obtain dangerous materials for usage in 

weapons.
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Selected Generation IV Concepts (out of 21)

GEN IV Concepts Acronym Spectrum Fuel cycle Temperature
Pressure

[°C] [bar]

Sodium Cooled Fast SFR Fast Closed 530-550 1

Lead Alloy-Cooled LFR Fast Closed 550-800 1

Gas-Cooled Fast GFR Fast Closed 490-850 90

Very High Temperature VHTR Thermal Once-Through 640-1000 70

Supercritical Water Cooled SCWR Th.&Fast Once/Closed 280-510 250

Molten Salt MSR Thermal Closed 565-850 < 5
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The Roadmap Addresses Viability and 
Performance R&D Phases
 Viability

K f ibilit d f f i i l d i i Key feasibility and proof-of-principle decisions

 Performance
 Engineering-scale demonstration and optimization to desired levels 

of performance

 Demonstration
 Mid to large scale system demonstration Mid- to large-scale system demonstration

 [Commercialization]
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VHTR - Technology gaps

Process-specific R&D gaps exist to adapt the chemical process and the nuclear 
heat source Qualification of high-temperature alloys and coatingsheat source Qualification of high temperature alloys and coatings.

Producing hydrogen using the I-S process

Performance issues include
development of a high-
performance helium turbine.

Modularization of the reactor
and heat utilization systems is
another challenge foranother challenge for
commercial deployment of
the VHTR.
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Concept of a modular HTR (1/3)
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Concept of a modular HTR (2/3)
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Concept of a modular HTR (3/3)
Underground arrangement of the reactor
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Accident behaviour of a modular HTR (1/10) 
Accident assumptions

external

• Full loss of coolant

• Full loss of the active residual heat 
removal

• Massive water ingress into the

internal
Causes

• Crash of a plane 
(phantom)

• Gas cloud explosion

• Earthquake (b < 0,3

• Terrorist attacks with 
planes (Booing 747)

• Sabotage 

• Impacts of war (missiles)

external
Causes

external
causes
(beyond

licensing)

Massive water ingress into the 
primary system

• Massive air ingress into the primary 
system

• Extreme reactivity disturbances

• Massive damage of reactor 
components

Earthquake (b  0,3 
g)

• Fire

• Tornados, hurricanes 
and floods

pacts o a ( ss es)

• Extreme earthquakes
(b > 0,3 g)

• Meteorites
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Accident behaviour of a modular HTR (2/10)

Stabilitäts-
i i

Wirkung
Requirements for a non melting 
inherent safe modular HTR

nukleare
Stabilität

thermische
Stabilität

selbsttätige Begren-
zung von nuklearer
Leistung und Brenn-
stofftemperaturen

selbsttätige Nach-
wärmeabfuhr aus
dem Reaktorsystem    nichtschmelz-

bare Brenn-
elemente und
C t kt

prinzip

 Fulfilment of the principles for all 
accidents due to internal and 
foreseeable external cause 
(requirements from licensing)

 Fulfilment of the principles for all 
accidents including 

inherent safe modular HTR

chemische
Stabilität

mechan-
ische

Stabilität

selbsttätiger Schutz
gegen Korrosion

selbsttätiger Schutz
gegen mechanische
Corezerstörung

Corestrukturen unforeseeable occurrences such 
as terrorist attacks or extreme 
earthquakes
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Accident behaviour of a modular HTR (3/10)

Automatic removal of the 
residual heat in the case of 
failing of all active heat removal
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Accident behaviour of a modular HTR (4/10)
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Accident behaviour of a modular HTR (5/10)

New safety requirements for 
nuclear technologynuclear technology
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h ti
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Accident behaviour of a modular HTR (6/10)

Reaktor

Bauschutt

Automatic removal of the residual 
heat after the destruction of the 

t b ildi (f l
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(mit Isolations-
wirkung)

 Reactor totally covered with 
rumble

 Residual heat is still removed 
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T (°C)

reactor building (for example 
caused by an extreme earthquake 
or a plane crash caused by 
terrorists)

es dua eat s st e o ed
automatically, but slowed down

 Maximum fuel temperature stays 
below 1600°C

 Total fission product release 
stays below 10-5 of the inventory
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Accident behaviour of a modular HTR (7/10)
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Accident behaviour of a modular HTR (8/10)

Granulat

V   5000mluft
3 Concepts for minimising the 

consequences of an air ingress 
accident:

1

2

8

7

354

6  Draining the primary Helium 
through  pipes over a filter

 Automatic limitation on the amount 
of air within the concrete cell (V < 
5000 m3) by automatic closing 
mechanisms (flaps and pouring 
granulate)

 Limitation of possible graphite1) Internal concrete cell (sealed against outside air)

acc de t

Limitation of possible graphite 
corrosion to < 500 kg C and  
therefore no radiological 
consequences

 Limitation of possible graphite 
corrosion to < 100 kg by simple 
intervention methods (protection of 
investment)

1) Internal concrete cell (sealed against outside air)

2) Reactor building

3) Draining channel

4) Sealing flaps (gravity)

5) Sealing plug

6) Granulate silo

7) Filter

8) Flue
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Accident behaviour of a modular HTR (9/10)

Begrenzung Begrenzung
der Mengen

Verhin-
derung der
K i

g g
der Menge

an Luft

der Mengen-
rate an

Luft

Korrosion
von Brenn-
elementen

 Volumen der inneren
   Betonzelle ist begrenzt
   (<5000m³)

h f l t D k

 Vorgespannter Reaktor-
   druckbehälter mit
   kleinen Öffnungen

 Korrosionsbeständige
   SiC-beschichtete
   Brennelemente

i B t ll nach erfolgter Druck-
entlastung schließt eine
Klappe oder ein Granulat-

   vorrat den Kanal ab

 innere Betonzelle wird
 mit Inertgas gefüllt

 Berst-Schutz für
   die Behälter

 Intervention in
   innerer Betonzelle

 innere Betonzelle
   ist mit Inergas
   gefüllt
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Accident behaviour of a modular HTR (10/10)
Comparison of the fuel behaviour after loss of the active residual heat removal.

~ 10
5
Ci

Brennstab

UO2-
Tablette

TB

t0 1 h

T
°C

     =
2850 

melt

  T ~
°C

C 
600

Brennstoff-
temperatur

( )°C ~ < 1Ci
Partikel

C

SiC

UO2-Kern

TB

30 h t

<1600 °C

Brennstoff-
temperatur

PWR HTR

Zr-
Canning S

t1 h

1

Schäden an den
Brennelementen

C Matrix

C

S

t

10
-5

Schäden an den
Brennelementen

30 h

Spring 2011 / Prof. W. Kröger Safety of Nuclear Power Plants 30



16

Total Assessment of Safety (1/2)

l kt i h

 Simulation of the residual heat in a 
graphite-sphere-pile by electrical 

i t h ti ( 2 MW f 300

Integral proof of safety behaviour

elektrische
Widerstandsheizung

resistance heating. (~ 2 MW for a 300 
MWth - Core)

 Analysis of all assumable accidents 
(total loss of coolant, air ingress, 
water ingress, pressure discharge, 
mechanical impacts on the elements 
of the shut down system, component 

f)damage when pressure relief)

 Validation of all calculating programs 
for extreme accidents (heat transfer 
throughout all structures, flow 
phenomena, acts of pressure 
discharge).
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Total Assessment of Safety (2/2)

 Fuel elements can never melt; there is no heating up of the fuel elements to a 
temperature above 1600°C

 The principal of automatic residual heat removal can never fail, even after the 
destruction of the reactor building it stays intact.

 The reactor would even stay resistant against extreme reactivity transient. 
There is no temperature raise of the fuel elements to above 1600°C

 The pre-stressed reactor containment can not burst; It is impossible that an 
unacceptable amount of air enters the primary loop, graphite corrosion is 
minimal.

 The ingress of larger amounts of water into the primary loop will not lead to 
unacceptable states of the reactor; in the case of gas turbines operating thisunacceptable states of the reactor; in the case of gas turbines operating this 
accident is not applicable. 

 Against extreme, in future even more severe external impacts, the 
underground way of building with covering mound, and fast removal of 
spherical fuel elements as protection

 There is no accident in which case a significant amount of radiation is released
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