

Eigenössiche Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich		Laboratory for Safety analysis Stimute His NAMAY TECHNICOT
Structure and "Levels" o	f a PRA for	Nuclear Power Plants
Plant response to initiating events	Level 1	Frequency of core damage (CDF) • includes accident management measure
Physical effects, containment response	Level 2	Frequency and amount of radionuclides released (source term, PDF)
Athmospheric dispersion, potential and expected doses, dose-effect/risk relation	Level 3	Frequency and quantities of environmental and health effects
Spring 2011	Safety of Nuclear Power Plants	

Eigenöusische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich		Laboratory for Safety Analysis	DMAVT Departement Maschinenbau & Verfahrenstechnik: Department of Mechanical & Process Engineering:
2. Inclusion of DF			
Probabilities of failure combinations			
 <i>q</i>_{AB}, <i>q</i>_{BC}, <i>q</i>_{AC} 			
a q _{ABC}			
Assumption: equality of all units:			
$ q_{AB} = q_{BC} = q_{AC} = \ldots = Q_{k=2} $			
• $q_{ABC} = Q_{k=3}$			
'2 out of 3-system'			
 Probability of a DF including two units: 3·Q₂ 			
 Combination of three (all) failures: q_{ABC} = Q₃. 			
3 System failure probability			
System failure probability Q ₂ including D	F:		
$Q_s = \Sigma Pr(independent failures) + \Sigma Pr(dep$	endent failures)		
·2 c	out of 3-system'		
$Q_{\rm s} = 3$	$3 \cdot Q_1^2 + 3 \cdot Q_2 + Q_3.$		
L			
Spring 2011 Sa	afety of Nuclear Power Plants		12

Eigenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich	Laboratory for Safety Analysis Notifiuit For Hullery Honocor	DEPARTEMENT Maschinenbau & Verfahrenstechnik: Department of Mechanical & Process Engineering:
From this it follows directly		
$ \qquad \qquad$		
$\beta \cdot (\mathbf{Q}_1 + \mathbf{Q}_n) = \mathbf{Q}_{k=n}$		
With $\mathbf{Q}_n = \mathbf{Q}_t - \mathbf{Q}_1$ follows		
$ Q_{k=1} = Q_t \left(1 - \beta \right) $		
Finally $((1-\beta) \cdot Q_t)$	<i>k</i> = 1	
$\mathbf{Q}_{k} = \begin{cases} 0 & 0 \end{cases}$	<i>m</i> > <i>k</i> > 1	
$\beta \cdot \mathbf{Q}_t$	<i>k</i> = <i>n</i>	
'2 out of 3-system'		
System failure probability	$Q_{\rm s} = 3 \cdot + 3 \cdot Q_2$	+ Q ₃
Changes in the β -factor-model to	$Q_{s} = 3 \cdot \left(1 - \beta\right)^{2} \cdot G$	$Q_t^2 + \beta \cdot Q_t$
Spring 2011 Safety of Nuclear Pow	ver Plants	

<page-header><image><image><text><text><text><equation-block><text><text><text>

	PRA, G	German NPP GKN-	II, Full Power	
Initiating Events		System damage state	e Core damage state	
Loss of main feed wate	ər	26%	<5%	
Loss of main heat sin	(20%	<5%	
Loss of preferred powe	er	17%	10%	
Very small primary leaks		16%	53%	
SBLOCA via stuck-open SRV		5%	15%	
Steam generator tube rupture		4%	7%	
Total expected frequency of s Total expected frequency	ystem da of core da	mage state without AM: 8. amage state with AM: 2.5x	5x10 ⁻⁶ /year :10 ⁻⁶ /year	
	Expect	ted frequency of system damage state / year	Expected frequency of core damage state / year	
Mean		8.5x10 ⁻⁶	2.5x10⁻ ⁶	
5% Fractile	1.6x10 ⁻⁶		4.4x10 ⁻⁷	
50% Fractile (median)	4.6x10 ⁻⁶		1.5x10 ⁻⁶	
95% Fractile		2.1x10 ⁻⁵	7.3x10 ⁻⁶	
	5.0x10 ⁻⁶			

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

DMAVT Departement Maschinenbau & Verfahrenstechnik: Department of Mechanical & Process Engineering;

Simplified Event Tree for Source Term Characterisation

Release Category	Release Characteristics					Release Fractions of Core Inventory			
Description and Frequency	Release starts [hrs]	Duration [hrs]	Warning time [hrs]	Energy [MBTu/hr]	Height [m]	Xe-Kr	Т	Cs-Rb	Ba-Sr
JK-1 Containment bypass 2.4 (-9)	1	3	0	0.3	10	9(-1)	7(-1)	5(-1)	6(-2)
JK-2 Early containment ailure Steam explosion I.0 (-10)	1	0.5	0	20	10	9(-1)	7(-1)	4(-1)	5(-2)
JK-5 Late containment ailure Vaporisation elease 3.0 (-9)	8	0.5	4	20	10	1 (0)	6(-2)	3(-1)	4(-2)
JK-6 Late containment ailure No vaporisation elease 1.2 (-9)	12	0.5	8	20	10	9(-1)	9(-3)	2(-1)	2(-2)

Eidgenössische Technische Swiss Federal Institute of T	Hochschule Zürich echnology Zurich	Laboratory for Safety Analysis INSTITUTE FOR EXERCT TECHNOLOGY	DEPARTEMENT Departement Maschinenbau & Verfahrenstechnik: Department of Mechanical & Process Engineering;
Exposur	e to radioactivity		
Units			
Activity SI-Unit: Historical:	Number of radioactive nuclear tran 1 Becquerel (Bq) = 1 s^{-1} Curie (Ci) 1 Ci = 3.7×10^{10} Bq	nsformations per time	e unit
Absorbed SI-Unit: 1 C Historical: 1 r 1 e	dose absorbed radiation per ma Gray (Gy) = 1 J kg ⁻¹ = 100 rad rad = radiation dose ad = 100 erg g ⁻¹ erg = 1 g × 1 cm ² s ⁻² = 10 ⁻⁷ J	ass unit	
Equivalen radiation. T	ce dose The biological effects of a The equivalence dose is represented	n absorbed dose dep d with a factor (relativ	pends on the type of ve biological effec-
tiveness, R weighted d	BE) which represents the ose.	Radiation	RBE
		Termionic-, gamma-, x	-rays 1
SI-Unit:	1 Sievert (Sv) = 1 Gy × RBE	Alpha particle	20
Historical:	rem = radiation equivalent man 1 rem = 1 rad × RBE = 0.01 Sv	Neutrons < 10 keV 10-100 keV 100-2000 k	y 5 10 eV 20
Spring 2011	Safety of Nuclear Po	wer Plants	29

Eigenössische Technische Hackschule Zärlich Swiss Federal Institute of Technologz Zarlich	Laboratory for Safety Analysis wstitute for interve technology	DEPARTEMENT Matchinenbau & Verfahrenstechnik: Departement of Mechanical & Process Engineering;
Types of damage		
Deterministic radiation damages (Frühscl	häden)	
The cardiotoxic dose is the threshold dose of building rate. The degree of damage of a do body is radiated.	of the cell killing rate ar use depends on whethe	nd the body's cell er a part or the whole
Typical non stochastic radiation damages a	re burnt skin and radia	tion illness.
The LD 50 lays around 4 to 5 Sv (400-500 re	m).	
The threshold level lies between 0.2 and 0.	5 Sv (20-50 rem)	
Stochastic radiation damage (Spätschäde Typical stochastic radiation damages are la damaged genes. Radiation cancer can't be	en): اوnt diseases like leuka distinguished from nor	aemia, tumours and mal cancer.
Spring 2011 Safety of Nucl	ear Power Plants	30

