Solutions for Tutorial 9 (Petri Nets)

- 1. Give the Matrices E^+ , E^- and m_o of the Petri Net below.
- 2. Draw the reachability graph of the Petri Net below.

Figure 1 Petri Net for Exercise 1 and 2

3. Draw the Petri Net with following Matrices:

$$E^{+} = \begin{pmatrix} 2 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad E^{-} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad m_{0} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Draw the Petri Net after the first switch, concerning the final state with only one token remaining

Solutions

1.
$$E^+ = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
 $E^- = \begin{pmatrix} 0 & 0 & 2 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$ $m_0 = \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$

2. The reachability graph looks like this:

3. The Petri net is illustrated in figure 1. If we want only one token left in the final state, T₃ has to fire first.

Otherwise if T₂ fires first, we have two tokens in P₁ and one in P₅, after T₁ fires we reach the final state with one token in P₃ and one in P₅.

Figure 1 Petri Net

Figure 2 Petri Net after first switch