Reliability of Technical Systems
 Tutorial \#3
 Solution

1. Consider the probability density function.
$f(t)=\left\{\begin{array}{c}0.002 e^{-0.002 t} \quad t \geq 0 \\ 0 \quad \text { otherwise }\end{array}\right.$
for t is in hours

Calculate reliability function, failure function, and design life if the reliability of 0.95 is desired.

Solution:

1) Reliability Function $\mathrm{R}(\mathrm{t})=\int_{t}^{\infty} f(t) d t \quad(\mathrm{f}(\mathrm{t})$ is the probability density function) therefore, $\mathrm{R}(\mathrm{t})=\int_{t}^{\infty} 0.002 e^{-0.002 t} d t=0.002 * \frac{1}{0.002} * e^{-0.002 t}\left\{\begin{array}{c}t \\ \infty\end{array}=e^{-0.002 t}\right.$
2) Failure function $\mathrm{F}(\mathrm{t})=\int_{0}^{t} f(t) d t=1-e^{-0.002 t}$
3) $\mathrm{R}(\mathrm{t})=0.95 \quad e^{-0.002 t}=0.95$
$t=25.6$ (hours)
2. Consider a system with four-component in series which the components are independent and identically distributed with CFR. If the reliability of the system during 100 hours is 0.95 . What is the MTTF of each individual component?

Solution:

For a system with four-component in series, assume all the components are independent and identical..

Rs $(100)=0.95$
$\mathrm{Rs}=\prod_{m=1}^{4} R_{c m}=R_{c 1} \times \ldots . . \times R_{c 4} \quad\left(R_{c m}\right.$ is the reliability of the mth component $)$
Therefore, $\mathrm{Rs}=e^{-4 \lambda_{c} t} \quad\left(\lambda_{c}\right.$ is the failure rate of each component)

Since $t=100(\mathrm{hrs})$ and $\quad \operatorname{Rs}(100)=0.95$
Solve the equation above and $\lambda c=1.28 \times 10^{-4}$ (1 /hour), which means that the every hour there is about 1.28×10^{-4} failures occurring in the component

For CFR distribution, $\mathrm{MTTFc}=1 / \lambda \mathrm{c}=1 / 1.28 \times 10^{-4}=7812.5$ hours
MTTFs $=$ MTTFc $/ 4=1953.125$ hours
3. A space vehicle requires three out four of its main engines to operate in order to achieve orbit. If each engine has a reliability of 0.9 , determine the reliability of achieving orbit.

Solution:

Total Engines $=4$
Required for service $=3$, 4 out of 3 should work

$$
\begin{aligned}
& \sum_{x=k}^{n}\binom{n}{x} R^{x}(1-R)^{n-x} \mathrm{x}=3,4 \\
& \quad=\sum_{x=3}^{4}\binom{4}{x} R^{x}(1-R)^{4-x} \\
& \mathrm{R}=4^{*}(0.9)^{3}(0.1)+0.9^{4}=0.9477
\end{aligned}
$$

