
Reliability of Technical Systems

Main Topics
1. Short Introduction, Reliability Parameters: Failure Rate, Failure Probability, etc.
2. Some Important Reliability Distributions
3. Component Reliability
4. Introduction, Key Terms, Framing the Problem
5. System Reliability I: Reliability Block Diagram, Structure Analysis (Fault Trees),

State Model.
6. System Reliability II: State Analysis (Markovian chains)
7. System Reliability III: Dependent Failure Analysis
8. Data Collection, Bayes Theorem, Static Redundancy
9. Combined Redundancy, Dynamic Redundancy; Advanced Methods for Systems

Modeling and Simulation I: Petri Nets
10. Advanced Methods for Systems Modeling and Simulation II: Object-oriented

modeling and MC modeling
11. Human Reliability Analysis
12. Software Reliability, Fault Tolerance
13. Case study: Building a Reliable System

3HS 2010 / Irene Eusgeld Reliability of Technical Systems

Mechanical / Hardware faults are design, manufacturing or operation faults.

They caused by disturbance or wear-out, where the physical rules are well-known.
Therefore these faults and their impacts on the failure rate are better understood
than software faults.

Software faults are (nearly always) design faults, which exist as latent faults
during system operation.

Well tested programs may still contain a high number of design faults, but exhibit
a low failure rate.

Hardware and Software Faults

4HS 2010 / Irene Eusgeld Reliability of Technical Systems

Countermeasures Against Software Faults

1.Removal of the failure:

• system reset (depends on environment)
Failure can, but need not occur again.

2.Countermeasures against future failures:

• error by-passing: questionable input data and/or commands are no longer
used and substituted as far as possible

• design fault tolerance by diverse design

3.Removal of the design fault:

• program correction (i. e. software repair): fault localization in the program,
change of the program to remove the design fault and not to insert a new
one

5HS 2010 / Irene Eusgeld Reliability of Technical Systems

Reliability

Software is not destroyed by design fault and thus “repairable”, in principle
(program correction).

Reliability measure to be quantified:

• Failure rate z(t)

Reliability measures derived thereof:

• Availability V

• Reliability R(t)

for time t from process start or restart, respectively:

If failure rate z(t) = λ is constant:

V =
+
µ

λ µ

t

0

z(x)dx

R(t) e
−∫

=
tR(t) e λ−=

where the failure rate z(t) = λ and the repair
rate μ are constant (at least approximately
for a limited period of operation)

6HS 2010 / Irene Eusgeld Reliability of Technical Systems

Fault Locations and their Correction (1/2)

number of fault locations in a program: s(t)

number of fault locations where a correction or improvement has been
attempted (successful or not) b(t)

s(t) + b(t) ≥ s(0) holds where s(0) is the number of fault locations at the
beginning of an operation
">" if some attempts have not been successful

improvement portion a

If an improvement is tried after each software failure a = 1 holds.

a > 1 is impossible, since we assume that faults can only be
improved after they have been detected through a failure.

7HS 2010 / Irene Eusgeld Reliability of Technical Systems

Fault Locations and their Correction (2/2)

It should be noticed that the number of fault locations in a program cannot
always be quantified without ambiguity. Fault locations may overlap or spread
over a collection of statements. Semantical faults can not be uniquely to a
syntactical structure.

The improvement portion a is determined by the organization of software
maintenance. During the test phase nearly all failures are analyzed and
improved (a = 1). In a later operation phase, the user and the maintenance
personnel are separated from each other. Therefor, the maintenance
personnel usually collects a number of (possibly identical or similar) failure
reports, before an improvement is attempted (a < 1).

8HS 2010 / Irene Eusgeld Reliability of Technical Systems

Problems of Software Design Fault Modeling

In complex software the interactions between various modules cannot be
covered by a simple model:

• A software system cannot be arbitrarily subdivided into independent
components.

Consequently, software components can be "big" modules.

• The failure rate depends not only on the component (the program), but also
on its environment (application, input data, load).

Consequently, reliability measures cannot be imported from one application
area to another one.

• Due to the design fault improvements the failure rate is decreasing rather
than constant.

A constant failure rate may only be assumed for the time interval between to
program improvements.

9HS 2010 / Irene Eusgeld Reliability of Technical Systems

Can software faults be modeled by analogy to hardware faults?

How can the three phases of the bathtub curve be interpreted
in this case?

bathtub curve

10HS 2010 / Irene Eusgeld Reliability of Technical Systems

Modeling Software Faults by Analogy to Hardware Faults

The three phases of the so-called bathtub curve could also be meaningful for
the software:

• Early faults characterize the design fault undiscovered during the testing
phase and causing a failure during the early operation.

• Random faults occur sporadically in the middle of the software life time
where "improvements" remove approximately the same number of design
faults as are newly inserted into the software.

• Wear-out is completely impossible in the software, of course. However,
when the environment changes during the time or the software is used for
different applications, the failure rate may increase similarly to a wear-out.

On the one hand, there are analogies and similarities in the interpretation of
early faults and random faults.
On the other hand, there are a lot of differences in the interpretation of the
late phase.

11HS 2010 / Irene Eusgeld Reliability of Technical Systems

12HS 2010 / Irene Eusgeld Reliability of Technical Systems

13HS 2010 / Irene Eusgeld Reliability of Technical Systems

Objectives of Diverse Design

• increased probability to generate a correct variant

• majority of correct variants

• independent design faults in the variants, where the design faults are not
activated by the same input data

Diversity does not guarantee that these goals are met.
Even a decrease in reliability is possible.

However, an improved reliability can be expected ("the principle of hope").

Diversity cannot substitute the efforts to make the software more perfect.

14HS 2010 / Irene Eusgeld Reliability of Technical Systems

15HS 2010 / Irene Eusgeld Reliability of Technical Systems

*Back-to-back testing involves cross-comparison of all responses obtained from functionally
equivalent software components. Back-to-back testing can remain an efficient way of detecting
failures even when the probability of identical and wrong responses from all participating versions,
is very close to one.

*

16HS 2010 / Irene Eusgeld Reliability of Technical Systems

17HS 2010 / Irene Eusgeld Reliability of Technical Systems

Two simplified fault models:

Linear Model (somewhat optimistic)

Exponential Model (somewhat pessimistic)

z(b) failure rate, b number of fault locations

18HS 2010 / Irene Eusgeld Reliability of Technical Systems

19HS 2010 / Irene Eusgeld Reliability of Technical Systems

20HS 2010 / Irene Eusgeld Reliability of Technical Systems

21HS 2010 / Irene Eusgeld Reliability of Technical Systems

22HS 2010 / Irene Eusgeld Reliability of Technical Systems

23HS 2010 / Irene Eusgeld Reliability of Technical Systems

24HS 2010 / Irene Eusgeld Reliability of Technical Systems

25HS 2010 / Irene Eusgeld Reliability of Technical Systems

26HS 2010 / Irene Eusgeld Reliability of Technical Systems

27HS 2010 / Irene Eusgeld Reliability of Technical Systems

28HS 2010 / Irene Eusgeld Reliability of Technical Systems

Linear Model: What time is required to detect and
to improve ∆N design faults?

29HS 2010 / Irene Eusgeld Reliability of Technical Systems

Linear Model: How many improvements must be made
in order to reduce the failure rate from z2 down to z3?

30HS 2010 / Irene Eusgeld Reliability of Technical Systems

31HS 2010 / Irene Eusgeld Reliability of Technical Systems

32HS 2010 / Irene Eusgeld Reliability of Technical Systems

33HS 2010 / Irene Eusgeld Reliability of Technical Systems

Exponential Model: How many improvements must be
made in order to reduce the failure rate from z2 down to z3?

Exponential Model: What time is required to detect
and to improve ∆N design faults?

34HS 2010 / Irene Eusgeld Reliability of Technical Systems

35HS 2010 / Irene Eusgeld Reliability of Technical Systems

Literature

Echtle, K. Fault-Tolerant Software Systems, Lecture-Script, Informatik,
University of Duisburg-Essen.

D. Musa, A. Iannino, and K. Okumoto. Software Reliability: Measurement,
Prediction, Application. McGraw-Hill, 1987. ISBN 0-07-044093-X

	Reliability of Technical Systems
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Literature

