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Mechanical / Hardware faults are design, manufacturing or operation faults.

They caused by disturbance or wear-out, where the physical rules are well-known.
Therefore these faults and their impacts on the failure rate are better understood 
than software faults.

Software faults are (nearly always) design faults, which exist as latent faults 
during system operation.

Well tested programs may still contain a high number of design faults, but exhibit 
a low failure rate.  

Hardware and Software Faults
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Countermeasures Against Software Faults

1.Removal of the failure:

•   system reset (depends on environment)
Failure can, but need not occur again. 

2.Countermeasures against future failures:

•   error by-passing: questionable input data and/or commands are no longer 
used and substituted as far as possible

•   design fault tolerance by diverse design 

3.Removal of the design fault:

•   program correction (i. e. software repair): fault localization in the program, 
change of the program to remove the design fault and not to insert a new 
one
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Reliability 

Software is not destroyed by design fault and thus “repairable”, in principle
(program correction).

Reliability measure to be quantified:

• Failure rate z(t)

Reliability measures derived thereof:

•   Availability V

•   Reliability R(t)

for time t from process start or restart, respectively:

If failure rate z(t) = λ is constant:

V = 
+
µ

λ µ

t

0

z(x)dx

R(t) e
−∫

=
tR(t) e λ−=

where the failure rate z(t) = λ and the repair 
rate μ are constant (at least approximately 
for a limited period of operation)
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Fault Locations and their Correction (1/2)

number of fault locations in a program: s(t)

number of fault locations where a correction or improvement has been
attempted (successful or not) b(t)

s(t) + b(t) ≥ s(0) holds where s(0) is the number of fault locations at the 
beginning of an operation 
">" if some attempts have not been successful

improvement portion a

If an improvement is tried after each software failure a = 1 holds.

a > 1 is impossible, since we assume that faults can only be
improved after they have been detected through a failure.
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Fault Locations and their Correction (2/2)

It should be noticed that the number of fault locations in a program cannot 
always be quantified without ambiguity. Fault locations may overlap or spread 
over a collection of statements. Semantical faults can not be uniquely to a 
syntactical structure.

The improvement portion a is determined by the organization of software 
maintenance. During the test phase nearly all failures are analyzed and 
improved (a = 1). In a later operation phase, the user and the maintenance 
personnel are separated from each other. Therefor, the maintenance 
personnel usually collects a number of (possibly identical or similar) failure 
reports, before an improvement is attempted (a < 1).
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Problems of Software Design Fault Modeling

In complex software the interactions between various modules cannot be 
covered by a simple model:

•   A software system cannot be arbitrarily subdivided into independent 
components.

Consequently, software components can be "big" modules.

•   The failure rate depends not only on the component (the program), but also 
on its environment (application, input data, load).

Consequently, reliability measures cannot be imported from one application 
area to another one.

•   Due to the design fault improvements the failure rate is decreasing rather 
than constant.

A constant failure rate may only be assumed for the time interval between to
program improvements.
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Can software faults be modeled by analogy to hardware faults?

How can the three phases of the bathtub curve be interpreted
in this case?

bathtub curve
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Modeling Software Faults by Analogy to Hardware Faults

The three phases of the so-called bathtub curve could also be meaningful for 
the software:

•   Early faults characterize the design fault undiscovered during the testing
phase and causing a failure during the early operation.

•   Random faults occur sporadically in the middle of the software life time 
where "improvements" remove approximately the same number of design
faults as are newly inserted into the software.

•   Wear-out is completely impossible in the software, of course. However, 
when the environment changes during the time or the software is used for 
different applications, the failure rate may increase similarly to a wear-out.

On the one hand, there are analogies and similarities in the interpretation of 
early faults and random faults. 
On the other hand, there are a lot of differences  in the interpretation of the 
late phase.
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Objectives of Diverse Design

•   increased probability to generate a correct variant

•   majority of correct variants

•   independent design faults in the variants, where the design faults are not 
activated by the same input data

Diversity does not guarantee that these goals are met.
Even a decrease in reliability is possible.

However, an improved reliability can be expected ("the principle of hope").

Diversity cannot substitute the efforts to make the software more perfect.
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*Back-to-back testing involves cross-comparison of all responses obtained from functionally 
equivalent software components. Back-to-back testing can remain an efficient way of detecting 
failures even when the probability of identical and wrong responses from all participating versions, 
is very close to one. 

*



16HS 2010 / Irene Eusgeld Reliability of Technical Systems



17HS 2010 / Irene Eusgeld Reliability of Technical Systems

Two simplified fault models:

Linear Model (somewhat optimistic)

Exponential Model (somewhat pessimistic)

z(b) failure rate, b number of fault locations
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Linear Model: What time is required to detect and 
to improve ∆N design faults? 
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Linear Model: How many improvements must be made 
in order to reduce the failure rate from z2 down to z3?
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Exponential Model: How many improvements must be 
made in order to reduce the failure rate from z2 down to z3?

Exponential Model: What time is required to detect 
and to improve ∆N design faults? 
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