
Reliability of Technical Systems 



Markov Modeling for Reliability Analysis

Introduction: „non-repairable unit"
System description: A unit changes its state at time t from „functional" to
„failed“.
This gives us the „state diagram“

state 1: „function"; state 2: „failure"

P1: P2: probability, that the unit is in state 1 at time t or interval t+∆t (and P2
accordingly)

- P1: P1(t+∆t) = [P1(t) ∧ P11(∆t)]

- P2: P2(t+∆t) = [P1(t) ∧ P12(∆t)] ∨ [ P2(t) ∧ P22(∆t)]

P11: P11(∆t): Probability, that a unit stays in state 1 during the time interval t to
t+∆t (and P22 accordingly)

P12: P12(∆t): State change probability, that an unit changes its state from 1 to 2 
during the time interval t to t+∆t
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λ⋅∆t: Probability, that the unit fails between time t und t+∆t.
System of equations
P1(t+∆t) - P1(t) = - λ∆tP1(t)
P2(t+∆t) - P2(t) = + λ∆tP1(t)
This system of equations as system of differential equations

Setting the system of equations

Assumption: • Failure rate λ = constant ⇒ Exponential distribution; the
reciprocal value from λ is named Mean Time to Failure
(MTTF)

• Failure probability at time t = 0: F(t = 0) = 0

This system in Matrix form:

( ) ( )1 1
d P t P t
dt

λ= − ⋅

( ) ( )2 1
d P t P t
dt

λ= + ⋅
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( ) ( ) ( )dF t dR t
f t

dt dt
= = −

( ) ( ) ( ) ( )
( ) ( )

1 exp ; exp

exp

F t t R t t

f t t

λ λ

λ λ

= − − = −

= ⋅ −

i
i

dPP dt
dt

= ⋅∫

( ) ( ) ( )1 1 expd P t P t t
dt

λ λ λ= − ⋅ = − ⋅ −

( ) ( ) ( )2 1 expd P t P t t
dt

λ λ λ= + ⋅ = ⋅ −

Failure density function:

Exponential distribution: 

with

hence, with P1 as the survival probability R(t) the system of equations becomes

Through standard integration we arrive at

t)exp(-1(t)P2 λ=
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t)exp(-(t)P1 λ=



State diagram of a repairable unit

State 1: "Function"; State 2: "in Repair"

P1: P1: State probability that the unit is at time t or time interval t = t+∆t in 
State 1 (P2: respectively)

- P1: P1(t+∆t) = [P1(t) ∧ P11(∆t)] ∨ [P2(t) ∧ P21(∆t)]

- P2: P2(t+∆t) = [P1(t) ∧ P12(∆t)] ∨ [P2(t) ∧ P22(∆t)]

P11: P11(∆t): Probability, that the unit is in the time interval t to t+∆t in state
1 (P22: respectively)

P12: P12(∆t): State change probability that the unit changes in time interval t
to t+∆t from state1 to state 2, thus fails.

P21: P21(∆t): State change probability that the unit changes in time interval t
to t+∆t from state 2 to state 1, thus is repaired.
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Extended System of Equations

( ) ( ) ( )1 1 2
d P t P t P t
dt

λ µ= − ⋅ + ⋅

( ) ( ) ( )2 1 2
d P t P t P t
dt

λ µ= + ⋅ − ⋅

This system can be solved through a La Place Transformation. Furthermore, several
software packages are available for the design and calculation of state diagrams, 
e.g. CARMS1 (see RSN-Website, freeware).

Repair rate µ(t)
The definition of the repair rate µ corresponds to the failure rateλ and is here
assumed to be constant (and hence the repair probability becomes FR(t) = 1-exp[-
µ·t]). The reciprocal of µ is MTTR (Mean Time to Repair), which can be estimated
through the empirical average repair time.
1 Computer-Aided Rate Modeling and Simulation
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with μ as the repair rate



( ) 0i
d P t
dt

=

( ) ( )1 20 P Pλ µ= − ⋅ ∞ + ⋅ ∞

( ) ( )1 20 P Pλ µ= + ⋅ ∞ − ⋅ ∞

( ) 1
i

i
P ∞ =∑

Simplification: State Probability for t →∞

That means that the gradient of the Reliability function Pi(t) is quasi zero
after „infinite time“. 

Example
A repairable unit
Simplified system of equations

This is not enough in order to solve the system, because the Nth state is
derived from the previous states.

The missing information is the constraint:

.

Advantage:

HS 2010 / Prof. Dr. W. Kröger 7Grundlagen der technischen Risikoanalytik



( ) ( )
( ) ( )
1 2

1 2

0

0 1

P P

P P

λ µ= − ⋅ ∞ + ⋅ ∞

= − ∞ − ∞

( ) ( )
( ) ( )

1 2

1 2

0 1

0

P P

P Pλ µ

= − ∞ − ∞

= ⋅ ∞ − ⋅ ∞

( ) ( )2 11P P∞ = − ∞
( )1P ∞

( ) ( )( )1 10 1P Pλ µ= − ⋅ ∞ + ⋅ − ∞

( )1P µ
λ µ

∞ =
+

( ) ( )2 11P P λ
λ µ

∞ = − ∞ =
+

For the system of equations (1), this means : 

or

Solving the left equation for
and replacing on the right gives an equations that is solvable for

Solving this equation gives the state probaility for the state 1 "Function" – in 
other words the stationary availability

The stationary failure probability is then
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 specific Data
Available data for a specific unit;  its validity hence is provided.

This kind of data is ideal for a reliability analyis. Nevertheless, 
often there is a lack of it in practice.

 generic Data
Such data often are given in publications. The validity of this data is
however not provided. 

Application to other units is questionable; convenient increase
of the data basis

 „expert judgement“
subjective judgement of an expert regarding the unit behavior.

Rather inappropriate for a reliability analysis, but often the only
available data source.

Data sources
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