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Main Topics
1. Short Introduction, Reliability Parameters: Failure Rate, Failure 

Probability, etc.
2. Some Important Reliability Distributions 
3. Component Reliability 
4. Introduction, Key Terms, Framing the Problem 
5. System Reability I: Reliability Block Diagram, Structure Analysis (Fault 

Trees), State Model. 
6. System Reability II: State Analysis (Markovian chains)
7. System Reability III: Dependent Failure Analysis
8. Static and Dynamic Redundancy
9. Advanced Methods for Systems Modeling and Simulation (Petri Nets, 

network theory, object-oriented modeling)
10. Software Reliability, Fault Tolerance
11. Human Reliability Analysis
12. Case study: Building a Reliable System 
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• The calculation of the system reliability is of particular 
importance when it cannot be measured directly – for 
example, when a new system has to be designed from 
existing components. 

• It must be noticed that the presented methods only apply if the 
failures of the components are stochastically independent. In 
reality, it is approximately the case if the main fault 
mechanisms are independent from each other. However, 
when faults propagate from a component to another one, the 
independence assumption is strongly violated. 
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Directed graph:
• Exactly one starting node E, exactly one terminal node A.
• Other nodes represent the binary random variable of a 

component (stating whether "faultless" or "faulty"). 
Notice that multiple nodes are allowed for a single 
component.

• Additional virtual nodes H help to simplify the representation.
Semantics: The system is faultless if and only if there exists a 

path from E to A solely via faultless components.

Reliability Block Diagram
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A reliability diagram illustrates a system function.
In principle, its modeling power is somewhat smaller than the Boolean 
representation of the system function, because special monotony conditions 
must be satisfied (see next slide).
In the reliability diagram there is no means to express negation. However, 
we can learn from the motivation of the monotony conditions, nearly all 
reasonable systems can be modeled by a system function without negation.
Some properties of the modeling by a reliability diagram are:
• Arranging several components along a path means connecting them by an 

"and" operation
• Arranging several components in parallel paths represents an "or" 

operation.
• If a component appears in several expressions of the Boolean system 

function, it must be put in a corresponding number of parallel paths of the 
reliability diagram.
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In the system function of a non-redundant system, all 
components are connected by an "and" operation. All 
components must be faultless to form a faultless system. In the 
example the "or" operator between components K2 and K3
indicated redundancy, which can be interpreted in various ways:

• The components form static redundancy.

• The components form dynamic redundancy, where K2 is the 
primary and K3 is the spare component.
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If we use this method to calculate the system function 
probability, then the probability of "or"-connected "and" 
expressions must be determined. Thereby the following rules 
have to be obeyed:

Rules for Boolean Functions : φ(x)
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The rules for the "and" operations only apply in case of 
stochastically independence.
As an example, two expressions may be not independent if they 
contain the same variable, Therefore, the following calculation 
for φ(X) = 0.9 is not valid:

The rule for the "and" operation is also part of the rule for the 
"or" operation. It must be applied accordingly there.

The rule for the "or" operation can cause a very high 
computation overhead. In this method, this rule must be applied 
for the “or “ connection of the cut expression.
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A fault case is a combination of the possible values of the 
binary random variables indicating which components are 
faultless and which are not.

For a system consisting of n components there are exactly 2n

fault cases.

For convenience the completely faultless case C = (true,…., 
true) is also called a fault case in this context.

It should be noticed that two fault cases are always disjoint. 
Two different fault cases cannot occur at a time.
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_ _
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• Theorem of the total likelihood

• Multiplication theorem for probabilities

Pr(X): Probability of the event X („impact“)

Pr(Θi): Probability of the „cause“ j

Pr(XIΘi): probability of the impact X assuming cause Θi.

Pr(ΘiIX): according to Pr(XIΘi)

( ) ( ) ( )
1

k

j j
j

Pr X Pr Pr X .
=

= Θ ⋅ Θ∑

( ) ( ) ( ) ( ) ( )j j j jPr X Pr Pr X Pr X Pr X .Θ ∩ = Θ ⋅ Θ = ⋅ Θ

Basic equations
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K1

K3

K2

E A

Recursive Binary Distinction of Fault Cases: Example
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K1

K3

K2

E A

Recursive Binary Distinction of Fault Cases: Split for K2

ϕ(S)=ϕ(K2)*ϕ(K1∧ (K2∨K3)| K2) + ϕ(K2)* ϕ(K1∧ (K2∨K3)| K2) 
_ _
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K1

K3

E A

Recursive Binary Distinction of Fault Cases

K2 is faultless

ϕ(K2)*ϕ(K1∧ (K2∨K3)| K2) =  ϕ(K2)* ϕ(K1∧ (1 ∨ K3)) = ϕ(K2)*ϕ(K1)
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K1

K3

E A

Recursive Binary Distinction of Fault Cases

K2 is faulty

ϕ(K2)* ϕ(K1 ∧ (K2 ∨ K3)| K2) = (1- ϕ(K2))* ϕ(K1 ∧ (0 ∨ K3))= (1- ϕ(K2))* ϕ(K1 ∧ K3)
_ _
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Negative Logic

Question: When is system 
faulty?

Methodes: Fault tree
Minimal Cut Sets

Variable:    x

Parameters: Failure probabilities

Positive Logic

Question: When is system 
faultless?

Methodes: CDFC, RBDFC, RD/RBD
Minimal Path Sets

Variable:    x

Parameters: Survival probabilities,
availabilities

_



25HS 10 / ETH Zürich Reliability of technical Systems

Method of Fault Tree Analysis (FTA)
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In a pumping system, a tank is filled in 10 minutes and emptied in 50 
minutes; hence, a complete cycle takes 1 hour. The switch is first closed and 
then the contact will be closed to allow the tank to be filled. After ten minutes 
(set by a timer), the contact will be opened to allow the tank to be emptied. If 
this mechanism fails, an alarm goes off and the operator opened the switch to 
prevent a tank failure due to overfilling.

Example from industry: pumping system 
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Example from industry: pumping system 

( ) ( ) ( )1 2 3 4 5 6 7

1 4 1 5 2 4 2 5 3 4 3 5 6 7

multiply

y x x x x x x x

y x x x x x x x x x x x x x x

= ∨ ∨ ∧ ∨ ∨ ∨  

= ∨ ∨ ∨ ∨ ∨ ∨ ∨

E A1

4

1

5
6 7

Boolean Function Failure:

This is a serial-parallel and serial 
system: Reliability Block Diagram

( ) ( )( )
6

1 2 1 4 1 5
1

1 1 1 1 1 etcSP i i
i

F q q q q q q ....
=

= − − = − − −  ∏

( )( )6 71 1 1sF q q= − − −  
41 0227 10SP sF F F ... . −= + = = ⋅

Computation:
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Negative Logic
Fault tree 

Question: When is system 
faulty?

Positive Logic
Reliability Block Diagram

Question: When is system 
faultless?

K1

K3

K2

E A

K2 K3K1

S

__ _

_

S = K1 ∨ (K2 ∧ K3)
_ _ _ _
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Negative Logic Positive Logic
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pi is a probability of a state i.
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Application of the State Modell:

Unrepairable System

Z1
(1,1)

Z2
(0,0)

λ

Zi(Ki,S), where Ki state of component, S- conditional state of system.
Λ - failure rate 

Homogenous system of equalities: ( ) ( ) 






−
⋅=

00
)(),()(),( 2121

λλ
tptptptp 

To be solved unter conditions: p1(t)+p2(t)=1 and p1(0)=1

Solution (via Laplace transformation
if necessary): 

tt etpandetp ⋅−⋅− −== λλ 1)()( 21
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Application of the State Modell:

Repairable System

Zi(Ki,S), where Ki state of component, S- conditional state of system.
Λ - failure rate, μ – repair rate

Z1
(1,1)

Z2
(0,0)

λ

μ

Homogenous system of equalities: ( ) ( ) 







−

−
⋅=

µµ
λλ

)(),()(),( 2121 tptptptp 

To be solved unter conditions: p1(t)+p2(t)=1 and p1(0)=1

Solution: 
tetp ⋅+−⋅

+
+

+
= )(

1 )( µλ

µλ
λ

µλ
µ It is the time dependent 

Availability V(t)!
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K1

K3

K2

E A

Application of the State Modell:

Example System

Number of states 23=8
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Z1
(1,1,1,1)

Z5
(0,0,1,0)

Z6
(1,0,0,0)

Z4
(1,1,0,1)

Z3
(1,0,1,1)

Z2
(0,1,1,0)

λ3

λ2

λ1

Z8
(0,0,0,0)

Z7
(0,1,0,0)

λ3

Stationary availability is calculated by V=p1+p3+p4

Application of the State Modell:
Example System

λ1

λ2

λ1

λ3

λ1

λ2
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Application of the State Modell:

Repairable System

Z1: λ*p1=μ*p2

µλ
λ

µλ
µ

+
=

+
= 21 , piscomplementthep

Z1
(1,1)

Z2
(0,0)

λ

μ

Z2: λ*p1=μ*p2
p1+p2=1

Stationary availability (steady-state availability)
V is calculated by
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