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Component Reliability and System Reliability

system S = {Ky, ... , K.}, number of components: n

9 0% ®

AN 4

Conclusions if the system structure is known:
Reliability of K4, ... , K, < Reliability of S (both directions)

Assumption:
Failures of the components are stochastically independent.
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* The calculation of the system reliabllity is of particular
Importance when it cannot be measured directly — for
example, when a new system has to be designed from
existing components.

It must be noticed that the presented methods only apply if the
failures of the components are stochastically independent. In
reality, it is approximately the case if the main fault
mechanisms are independent from each other. However,
when faults propagate from a component to another one, the
Independence assumption is strongly violated.

HS 10/ ETH Zirich Reliability of technical Systems



ETH

Eidgenossische Technische Hochschule Ziinch

Swiss Federal Institute of Technalogy Zurich

System Function

We will use the component identifiers K4, ... , K, and the system identifier S
also as binary random variables, indicating whether the respective
component is faultless or not.

We write the binary values in one of the following forms:
true = 1 = faultless,
false = 0 = faulty.

The (Boolean) system function f expresses the relationship between
the component state (0 or 1) and the system state (0 or 1):

S=f(Ky, ..., Kp)

Example: S = K, ~ (K, v K;) denotes a system which works properly
as long as K4 and at least one of the components K, or K5 are faultless.

HS 10/ ETH Zirich Reliability of technical Systems



Reliability Block Diagram

Directed graph:
« Exactly one starting node E, exactly one terminal node A.

e Other nodes represent the binary random variable of a
component (stating whether "faultless" or "faulty").

Notice that multiple nodes are allowed for a single
component.

« Additional virtual nodes H help to simplify the representation.

Semantics: The system is faultless if and only if there exists a
path from E to A solely via faultless components.

K
Came L =={~C
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A reliability diagram illustrates a system function.

In principle, its modeling power is somewhat smaller than the Boolean

representation of the system function, because special monotony conditions
must be satisfied (see next slide).

In the reliability diagram there is no means to express negation. However,
we can learn from the motivation of the monotony conditions, nearly all

reasonable systems can be modeled by a system function without negation.
Some properties of the modeling by a reliability diagram are:

« Arranging several components along a path means connecting them by an
"and" operation

« Arranging several components in parallel paths represents an "or"
operation.

« |f a component appears in several expressions of the Boolean system

function, it must be put in a corresponding number of parallel paths of the
reliability diagram.

HS 10/ ETH Zirich

Reliability of technical Systems



ETH

Eidgem sche Technische Hochschule Zikrich
Swiss Federal Institute of Technalogy Zurich

Required Monotony

In the reliability diagram negation cannot be expressed. Hence for a
system S = {K4, ... , Ky} @ monotonic system function is required:

*

A system is faultless, if all its components are faultless:
Kl f’\. i ;"ﬁ'\ Kn :” S

A system is faulty, if all its components are faulty:
—K; o =K, = =S

A faulty system remains faulty, if an additional component fails:
Kn-=S=(-K= -5)

A faultless system remains faultless, if one of its components makes
the transition from faulty to faultless:
—-K A8 = (K=S)

HS 10/ ETH Zirich Reliability of technical Systems
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In the system function of a non-redundant system, all
components are connected by an "and" operation. All
components must be faultless to form a faultless system. In the
example the "or" operator between components K, and K,
Indicated redundancy, which can be interpreted in various ways:

 The components form static redundancy.

 The components form dynamic redundancy, where K, is the
primary and K; is the spare component.

HS 10/ ETH Zirich Reliability of technical Systems
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Rules for Boolean Functions : ¢@(X)

If we use this method to calculate the system function
probabillity, then the probabillity of "or"-connected "and"
expressions must be determined. Thereby the following rules

have to be obeyed:

o(X) = 1-(X)
o(X ~ Y) = o(X)-@(Y) Iincase of stochastical independence
X vY) = oX)+ @(Y)- (X Y)

r
o(X, n...nX) = JTeX,) incase of stochastical independence

=1
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The rules for the "and" operations only apply in case of
stochastically independence.

As an example, two expressions may be not independent if they
contain the same variable, Therefore, the following calculation
for @(X) = 0.9 is not valid:

o(X A~ X) = @(X) - o(X) = o(X) - (1—@(X)) = 0.9- 0.1 = 0.09
Correct is the following:
(X ~X) = @(0) = 0

The rule for the "and" operation is also part of the rule for the
"or" operation. It must be applied accordingly there.

The rule for the "or" operation can cause a very high
computation overhead. In this method, this rule must be applied
for the “or “ connection of the cut expression.

HS 10/ ETH Zirich Reliability of technical Systems
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Function Probability

The function probability ¢(K) or. o(S), respectively, denotes
(either time-depent or time-independent)

« either the reliability R (probability to survive)
« or the availability V

of a component K or the system S, respectively.

For a component X or a system X we write:
X = —X X is not functioning

(p(}_() = 1—-0(X) = p(X) failure probability

HS 10/ ETH Zirich Reliability of technical Systems
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Fault Case Probability

A fault case C < {true,false}" is abinary vector with n elements.

Fault case C occurs, if for the vector (K4, ... , K,)
the equality C = (K4, ..., K;) holds

The fault case probability (the probability that C occurs) is:
n K) if K
(O = T1 o(K) A

i=1. 1—o(K) if K

Example: For a system S = {K;, K,, K5} with

0(Ky)=0.9, ¢(K;)=0.8 and ¢(K3)=0.7

the fault case probability of fault case C = (1, 0, 1) is:
v((1,0,1)) = 0.9-(1 —0.8)-0.7 = 0.126

HS 10/ ETH Zirich Reliability of technical Systems
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A fault case is a combination of the possible values of the

binary random variables indicating which components are
faultless and which are not.

For a system consisting of n components there are exactly 2"
fault cases.

For convenience the completely faultless case C = (true,....,
true) is also called a fault case In this context.

It should be noticed that two fault cases are always disjoint.
Two different fault cases cannot occur at a time.

HS 10/ ETH Zirich Reliability of technical Systems
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System Function Probability

Since fault cases are disjoint the equality holds:
system function probability = sum of the probabilities of the fault cases
in which the system as a whole is faultless.

For the system S = {K4, ..., K} with system function f we obtain:
( :
o®)= x| OIS
C = {true, false}" L0 T (G

By this formula the first method to determine the system function probability
is defined: complete distinction of fault cases.

« advantage: easy to understand

» disadvantage: high computation overhead because of a typically
very high number of fault cases

HS 10/ ETH Zirich Reliability of technical Systems
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15t Method: Complete Distinction of Fault Cases (Example)

Letbe S =K, »n (K, VvKj;)
0(K1)=09 0(K)=08 (K;3)=07

This system is faultless in the following three fault cases
(out of a total of 23 = 8 fault cases):
C1=(1,0,1), C>=(1,1,0), Cz3=(1,1,1)

As an example C 4 = (1, 0, 1) means that K, is faultless, K, is faulty and
K5 is faultless.
The system function probability is calculated as follows

9(S) = oK, A (K, v Ky)) = 9(C)) +v(C,) +v(Cy) =

-

o(K,) - (1 -9(K,)) - o(K;) + o(K,) - 9(K,) - (1 —(K;)) + o(K,) - o(K,) - o(K;)
= 09-02-07+09-08-03+09-08-0.7= 0.846

HS 10/ ETH Zirich Reliability of technical Systems
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Recursive Binary Distinction of Fault Cases

The second method to calculate the system function probability
is based on the rule of total probability:

By arbitrarily selected components K the system is recursively split into
the subsystems "K faultless" and "K faulty". For each step holds:

VKeS: o) = oK) - o(S|K)+ oK) - ¢(S|K)

9(S 2 X)

A\~ 7 which can be
o(X)

Here, ¢(S|X) denotes the conditional probability
easily determined: _
In the system function S we substituts X by 1 and X by 0, respectively. This

simplifies the system function because the variable X is eliminated.
« advantage: usually low computation overhead

» disadvatage: the optimal selection of appropriate components requires
human intuition.
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Basic equations

» Theorem of the total likelihood

Pr(X) = Zk:Pr (@1.)-Pr(x\®j).

j=1

» Multiplication theorem for probabilities
Pr(®,nX)="Pr(®,)-Pr(X|e;) = Pr(X)-Pr(e|X),

Pr(X): Probability of the event X (,impact")

Pr(©,): Probability of the ,,cause”

Pr(X10,): probability of the impact X assuming cause O..
Pr(©,1X): according to Pr(XIO)

HS 10/ ETH Zirich Reliability of technical Systems
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Recursive Binary Distinction of Fault Cases: Example

v
7
N

Ofeh W

v
7
w

As in the previous example letbe S = K, » (K, v Kj)
0(K)=09 o(Ky)=08 o(K;)=07

HS 10/ ETH Zirich Reliability of technical Systems
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Recursive Binary Distinction of Fault Cases: Split for K,

-
olrul e

Ky | —

\ 4

P(S)=0(Ky)*o(Kia (KvKy)| Ky) + (P(}Zz)* P(KiA (KyvKy)l |Z2)

HS 10/ ETH Zirich Reliability of technical Systems
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Recursive Binary Distinction of Fault Cases

K, is faultless

A 4
L &

O] W

\ 4
e
w

P(K)* (Ko (KovKy) Ky = 0(Ky)* o(Kia (1 v Ky)) = o(Ky)*e(K,)
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Recursive Binary Distinction of Fault Cases

K, is faulty

OITuINPe

A 4
7o
w

P(Ko)* o(Ky A (Ko v Kyl Ky) = (1- 9(Ko))* 0(Kq A (0 v Kg))= (1- o(Ko))* o(Ky A Ky)

HS 10/ ETH Zirich Reliability of technical Systems
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15t Split for K
0(S) = @(K,) - o(K; 2 (K, v K ) [K,)+ o(K,) - oK, A (K, v Ky)

K,)

= (p(K’r) (P(Kl R NY K_:, ])_ (1 _[P(Kg)) ' (P(Kl A0 v K3})

= oK) oK)+ (1-9(K,)) oK, ~K;)

2"d Split for K, in the expression ¢(K, A K,):
o(K, A K;) = 9(Ky)- oK, 2 Ky|K)) +o(K) - o(K, A K; |K,)
= 9(K))- 9(Ky) +(1-0(K))) - 9(0) = o(K,) - o(K;)

Substitution of the values: ¢(S) = 0.8-0.0+(1-0.8)-0.9-07 = 0.846
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Negative Logic Positive Logic
Question: When is system Question: When is system
faulty? faultless?
Methodes: Fault tree Methodes: CDFC, RBDFC, RD/RBD
Minimal Cut Sets Minimal Path Sets
Variable: x Variable: x
Parameters: Failure probabilities Parameters: Survival probabilities,
availabilities
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Method of Fault Tree Analysis (FTA)

Starting point of FTA is a predefined system state (failed state as “top event”). The sub-
sequent task is to find event combinations leading to the “top event’. The branches are
tracked top-down (top event -> intermediate events -> basic events); the reasoning is
deductive.

Goals

e Systematic identification of failure modes (causes) and associated unit failures (basic
events) leading to a “top event”
e Computation of “top event” probability where appropriate

Working steps of a FTA

(1) Definition of the “top event”

(2) Identification of all basic event combinations which result in the “top event”

If quantitative

(3) Assignment of failure probabilities to basic events

(4) Boolean modelling and calculations of probabilities

(5) Analysis of dominating failure combination and impacts (importance analysis), pro-
posals for system improvement/optimisation

HS 10/ ETH Zirich Reliability of technical Systems
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(1) Definition of the “top event*

¢ In general: system failure
e |n particular: loss of specific functions and services meaning the failure of the overall
system, (e.g. rupture of a gas storage tank).

(2) Identification of basic event combinations

The formal combination of events constitutes the logical structure of the system consid-
ered or the derived Boolean model (fault tree). The model consists of:
e Input events: lower event (“input” to the gate)
e (ates (logic operation). show the relationship of lower events needed to result in a
higher event (logic AND, OR)
e Output events: higher event (“output” of the gate).

The behaviour of the gates is determined by the Rules of Boolean Algebra.

HS 10/ ETH Zirich Reliability of technical Systems
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Logic Gate Symbols

Symbol Alternative symbols Description

/J\ | OR-Gate

Qutput fault occurs if at
=1 least one of the input

E, ‘ 52‘ faults occurs

|A AND-Gate
Output fault occurs if all
P of the input faults
occur
‘ ‘ E1| E;.‘

HS 10/ ETH Zirich Reliability of technical Systems
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(4) Boolean modelling and calculation of probabilities

Summary of the assumptions/preconditions

¢ A technical system consists of units (components)
e The units are both technically and logically connected
e The state of each unit follows a binary logic (TRUE/FALSE, on/off, intact/defect)
¢ Available logic operators are:
° conjunction: AND (n)
° disjunction: OR (V)
Labelling of the probabilities:

pi-  probability of survival of the j-th unit
gi. probability of failure of the /-th unit

HS 10/ ETH Zirich Reliability of technical Systems
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Example from industry: pumping system

In a pumping system, a tank is filled in 10 minutes and emptied in 50

minutes; hence, a complete cycle takes 1 hour. The switch is first closed and
then the contact will be closed to allow the tank to be filled. After ten minutes
(set by a timer), the contact will be opened to allow the tank to be emptied. If
this mechanism fails, an alarm goes off and the operator opened the switch to

prevent a tank failure due to overfilling.

Dperateur

X

Schalter A Kontakie

24
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Example from industry: pumping system

System Failure
approx. 1.27E-6
+1.01E-4 =

N

TOP EVENT
Q=1.02e-4

T

Controlf
manitoring
approx. 127E-3
x1E-3=

Disturbed
Operation:
approx. 2x 5E-4
+27E4 =

2

GATEZ
(=1.27e-3

7T

Filling: approx
1E-6+ 1E-4 =

a

GATEZ
Q=1.01e-4

Tr

Mormal
Operation
approx. 2 5E-4

Tank rupture

Pump failure

£\

GATE4
(=1.00e-3

T

Switch fails to | | Operator fails to | [ Signal horn fails || Timer failure || Mo contact with
close react to alarm pump
| EVENT1 || EVENT2 || EVENTS || EVENT4 || EVENTS |
(=5.00e-4 1=2.70e4 Q=5.00e-4 (0=5.00e-4 =5.00e-4

| EVENT 6 || EVENT 7 \

[=1.00e-6

Q=1.00e-4

Boolean Function Failure:

y:[()_(lv)_(2 v)_(3)/\(§4 v)_(5)]v()76 v§7)

multiply

Y =X X, VXX VXX, VKX VXX, VX Xs VX VX,

This is a serial-parallel and serial
system: Reliability Block Diagram

E 1 1 A
=16 = 7 =)
4 5
Computation:

Fsp = 1_1i1[(1_Q1iq2i )21_[(1_ q1q4)(1_ qqu)“"etC]

F=1- [(1_ ds)(1-0qy )]
F=F,, +F, =..=10227-10"

HS 10/ ETH Zirich
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Advantages of a FTA

e \Well suited for modelling of binary (Boolean) mechanical processes, e.g. valve fails to
open/close

e Events occurring on component level due to interaction of multiple failures are easily
representable

e Provides reliability figures of a system (if adequate data are available)
Encourages a methodical way of thinking

Applicable to a wide field of systems and processes.

Disadvantages

e Dynamic processes are not representable (a system is considered as "static")

e Complicated systems usually result in an unmanageable amount of basic events and
branches

e Reliability figures are often difficult to get.

HS 10/ ETH Zirich Reliability of technical Systems
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Negative Logic Positive Logic
Fault tree Reliability Block Diagram
Question: When is system Question: \When is system
faulty? faultless?
S

.
B
D

|

i -

A 4
78
w

S =Ky v (KyAKy) S = K, A (K, vKy)

HS 10/ ETH Zirich Reliability of technical Systems
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Minimal Cut

A set of components cutting all paths from E to A in the reliability diagram,
is called a cut. A cut is minimal, if it does not contain another cut as a

subset.
éa cut )
G3 = {Ky, Ky}
N O ™

s il K2 -\

.
o e

®_+ K1 T —

cut cut N /
NN

The cuts G4, G, and G5 are minimal.
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System Function Probability Derived from Minimal Cuts

After all K minimal cuts G4, ..., G of a system have been identified
we can apply the third method to calculate the system function probability:
Let be cut G; = {KH’ .. K} for1=i=Kk. This cut Gjis of order m(i).

mii)

Cut G, can be transformed into

the corresponding cut expression T, = P{_|1 A AK
mil)

From all cut expressions the system function probability can be calculated:
QS) =1-¢(T,v...vT,)

= 1-0o((K, n...AK )vmv(Kkl R )

1 1

HS 10/ ETH Zirich Reliability of technical Systems
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3" Method: Minimal Cuts (Example)

Y N o A
| K, O3 ={Kz, K4}
E—1 K —®
cut cut K3 l K4 —
O K (oo kay /

®(S) = 1-o(K, v (K, nKy) v (K, ~Ky))

= 1-o(K,) —o(K; A K3) — (K, A K) + (K, A K, A Ky)+o(K, A K, AK))...

HS 10/ ETH Zirich Reliability of technical Systems
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Accuracy and Approximation

Besides the third method ("minimal cuts") there exist some more,
such as "minimal paths" or "disjoint paths".

"Minimal cuts" usually achieves a higher precision, because ¢(X) instead
of o(X) is closer to 0 (better use of the mantissa in floating point operations).

Example with decimal numbers, rounded to 0.1
Calculation with ¢(X): 0.9-10° - 0.9-10° = 0.8-10° (deviation 0.01)
Calculation with @(X): 0.1-10° - 0.1-10° = 0.1-107" (no deviation)

Moreover, an approximation can be obtained by ignoring the cuts
of higher order, because ((‘p()()]l >> (p(X))” >> [Fp()())3 >> . holds.

By analogy, products with a higher number of factors close to 0 can be
omitted in a sum.

Example: Last product of 4 factors in the sum on the previous page.

HS 10/ ETH Zirich Reliability of technical Systems
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Negative Logic Positive Logic
Minimal Cut Sets Minimal Path Sets
Smallest set of failed units, that blocks the path from | Smallest set of (operating) units, that leaves open a
input to output in a reliability block diagram. path from input to output in a reliability block diagram.
Example
X X
X
Cuts 0 0,={X;; % }; 0, ={%:%; ) Paths 7: m,={X,; X, | 7, ={X;]

HS 10/ ETH Zirich Reliability of technical Systems
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Cuts o;: ={X;;X;}; 05 ={%: %} Paths 7. 7, ={x;;% }; m ={X;}
Boolean functions
y=1-N(1-0,)=1-[(1-%%)(1-%,%, )] y=(1-7,)=(1-x,)(1-x,)
J'l=1 J|=|
multiply, Idempotent law ...

?:1_[(1_)_(1%)(1_?2_3)] Y =1=XX = X5 + XXX,
=1=(1-XX; = X, X; + X, XX, X;)
=X X3 + Xo X5 — X; X3 X3

Note: Calculations in order to get the same formal rep-
resentation as for cut sets.

y=1-(1=-%)(1-3) = (1-) + (1-X,)(1- X, ) (1- X;)
=...multiply...
= X, X5 + X, X3 — X, X5 X,

System failure probability

F = q.9; + 9,95 — 4,459,

F = 495 +4.9; — §,4,9,

HS 10/ ETH Zirich
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P;

State Model

Instead of subdividing a system into components it can also be subdivided
into global states Z,, ... , Z,,. Each state Z, represents a combination
of component states: Z;, = (K, ..., Kj).

The transition rates o, ; between states Z; and Z; define the
mean number of transitions from Z; to Z; per time unit
provided that the systemisinstate Z;, (1<i<m und 1<j<m).

Advantages:

+ Modeling in great detail: Any state transitions can be expressed,
in particular: fault tolerance techniques (like reconfiguration) and repair.

+ joint performance and reliability evaluation

Disadvantage: High computation overhead due to the large state space.

IS a probability of a state |.

HS 10/ ETH Zirich
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Application of the State Modell:

Unrepairable System

Z
(1,1)

Zi(K,,S), where K; state of component, S- conditional state of system.
N\ - failure rate

—A A
Homogenous system of equalities: (pl (t), p, (t)) = (pl (t), p, (t))[ 0 j

To be solved unter conditions: p,(t)+p,(t)=1 and p,(0)=1

— At — At
Solution (via Laplace transformation P, (t)=e and p,(t)=1—e
If necessary):

HS 10/ ETH Zirich Reliability of technical Systems




Application of the State Modell:

Repairable System

A
Z, ,
(1.1)

Zi(K,,S), where K; state of component, S- conditional state of system.
N\ - failure rate, u — repair rate

)
Homogenous system of equalities: (, (t), p, (t))=(p,(t), p, (t))( y —,u]

To be solved unter conditions: p,(t)+p,(t)=1 and p,(0)=1

P (t)— #H + A Lo (At It is the time dependent
A —

Solution: ﬂ,—l—,u /1"‘/‘1 Avalilability V(t)!
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State models express each combination of component states by a separate
global state.

In a system from two components K, and K, we have the global states:

- Both K, and K, are faultless, expressed by the global state Z, = (1, 1).

- K, is faultless and K, is faulty, expressed by the global state Z, = (1, 0).
- K, is faulty and K, is faultless, expressed by the global state 2, = (0, 1).

- Both K, and K, are faulty, expressed by the global state £, = (0, 0).

The transition rate ,j can also be seen as the reciprocal of the mean duration
between the entering of state Z; and the transition from Z; to Z;. However, it must be
taken into account, that from Z; also other states could be reached
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Application of the State Modell:

Example System

K;

Ofeh W

A\ 4

v
7
w

Number of states 23=8
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Application of the State Modell:
Example System

Stationary availability is calculated by V=p,+p;+p,
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Calculation of the Steady-State State Probabilities

In the state model with constant transition rates (homogeous Markovian
model) the state probabilities p; approach their final values P,.

These values express the steady-state behaviour:
For all states the sum of "inputs” is equal to the sum of "outputs".

m m
Vije{l, ..., m}k > Piroy; = > Pprogy

i=1 k=1
This formula expresses a homogenous linear system of equalities to be
solved under the condition

m
>Po=1 (15t Method to calculate the steady-state
i =1 state probabilities).
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By state probability we mean the probability that the system is in the respective state.

In the steady-state the state probabilities no longer change. Therefor, for each state
the sum of "inputs” from other states (increasing the state probability) must be equal
to the sum of "outputs” to other states (decreasing the state probability).

In other words, the probability to enter a state is the same as to leave the state
in a given time interval.

The homogenous linear system of m equalities with m variables cannot be solved
due to the depence of the equalities. The solution is possible with the additional
equality stating the the sum of all state probabilities is always one.
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Application of the State Modell:

Repairable System

A
Zl
1,1) 4
v
Z,: Np=p*p, Zy: N*p=p*p,
P+P,=1

Stationary availability (steady-state availability)
V is calculated by

£ the complementis p, =
A+ p A+ u

P =
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