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Main Topics
1. Introduction, Key Terms, Framing the Problem 
2. → Reliability Parameters: Failure Rate, Failure Probability, Availability, 

etc.
3. Some Important Reliability Distributions 
4. Component Reliability 
5. Software Reliability 
6. System Reliability: Structure and State Modelling 
7. Dependent Failures 
8. Human Reliability 
9. Static and Dynamic Redundancy 
10. Fault Tolerance 
11. Advanced Methods for System Modelling and Simulation
12. Dependability
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Qualitative: Reliability is the ability of a component/system to 
perform a required function under stated conditions 
for a specified period of time.

How can we estimate reliability?

How to evaluate e.g. how likely a system failure is 
within a certain period of time?

With particular probability:

Distribution Function
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Subareas of the Mathematics as a 
Basis for the Reliability Theory

Probablity Theory Math. Statistics Set Theory

Reliability Theory
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state

time

intact

defect

0 t1 t2 t3 t5t4

System State as a Function of Time

not 
repairable
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Essential Terminology
Probability Occurrence Frequency Rate

Dimensionless 
parameter between 
1 and 0. Fixed by the 
Kolmogorov axioms.

Occurrence bases on 
data and therefore 
belongs to a random 
test.

Occurrence 
over  time.

Rate measures the 
current change of one 
parameter of units 
depending on the change 
of another one (usually 
time).

Classical:
P. are usually taken 
and interpreted as 
relative occurrence.

Absolute:
Number of events that 
occurred.

A rate can often be 
empirically estimated by 
taking of the average 
(relative occurrence) over 
a longer time interval.

Subjective:
Degree of the 
expectation of an 
individual that a 
possible event 
occurs.

Relative:
Regarding an event:
Number of occurrences
divided by the whole 
number of cases.
Regarding time:
See rate, frequency.
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Kolmogorov axioms (Andrey Nikolayevich; [1903-1987])

Given: set of events Ω,

σ-Algebra with the partial events Ai

The number Pr(A) is the probability of the event A, if, and only if,

1. Non negativity axiom: 

Pr(A) is a distinct determined, real positive number for all events A in α

2. Norming axiom:

The sure event has the probability 1, also              

3. Additive axiom:

Probabilities of contradicting, i.e. each other excluding, different events can 
be represented as a sum of single probabilities. Contradicting means that the 
connection of the different events leads to an impossible event Pr(A) = 0.  
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Random event* (is an event chosen at random
from a finite family of events): 

Appearing a number on top of the dice

The dice is used in many board games. The numbers 1 to 6 appear on the six 
sides of a cube. You throw the dice and let it roll to a standstill. 

It is by chance which number appears on top!

This is the attraction of throwing the dice. It gives the game unexpected turns 
and adds excitement to it. 

We can also do it for a statistical experiment. In this case a real number is 
assigned to an elementary event of a statistical experiment (throwing the dice). 

* Failure occurrence is a randon event.



9HS 09 / ETH Zürich Reliability of Technical Systems

A function that assigns the elements of the result or event set of an experiment 
(random tests) to real numbers is called Random Variable. 

Random Variables are denoted with capital letters, while small letters denote the 
possible values or realisations of the Random Variable.

Every Random Variable X is a mapping from the random test into the real 
numbers. If X is only expressed by whole numbers, it is called discrete, otherwise 
continuous.

A Random Variable is called discrete if it can take on at most a countable number 
of values xi with single probabilities Pr(X = xi), whose sum is equal to one.

X is called Random Variable if for each real number x the probability Pr(X ≤ xi), 
exists.

Random Variable
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For a single roll of an s-sided dice, the probability of rolling each value is exactly 
1/s. This is an example of a discrete uniform distribution. For s = 6:

P(X = x) =

Suppose we repeat the dice throwing experiment asking what the probability that 
the dice will land on a number that is at most equal to 4 is. 

The so called distribution function is defined as   
F(x) = P(X ≤ x)

the probability that the random variable X takes on a value 
which is less than or equal to x.

( )




 =

otherwise

x

0

6,...2,16
1

Solution: There are 6 possible outcomes represented by S = { 1, 2, 3, 4, 5, 6 }. 
Each possible outcome is equally likely to occur (uniform distribution). 
This problem involves a cumulative probability. The probability that the dice 
will land on a number x ∈ { 1, 2, 3, 4} is equal to: 

P(X ≤ 4) = P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = 1/6 + 1/6 + 1/6 + 1/6 = 2/3
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In order to transfer the just now explained terms into the scope of reliability, we 
just need to change the random variable X to the time T, which passes until 
components fail or get defect.

The function

F(t) = P(T ≤ t),

which gives the probability of operating time until failure, not longer than a given 
time period t, is therefore logically called failure distribution function.

The failure probability is 0 for t ≤ 0, since a negative time to failure is impossible. 
For increasing times t > 0, the fault probability increases monotonically. It 
approaches 1 for t→∞.
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Probability Density

New parameter: The gradient m of a 
straight (or function) is not equal to zero. 

difference quotient:                       or as

differential quotient: 

and therefore

px is the probability that values in the interval [x1, x2] are realised. 
f(x) is the Density Function.

How to estimate probability Pr(x≤X ≤ x+∆x)? 

px=Pr (x1 ≤X ≤ x2)

P(x)
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Probabilities in the Reliability Theory are often related to the operational time t. 

Therefore                                                          

the density f(t) is the gradient of the distribution function F(t) at t (time). 

Consequently:

F(t) can be defined in terms of the probability density function f as well. 

Pr (t1 ≤T≤ t2)
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The failure distribution function F(t) has the complement:

Reliability (in the sense: probability to survive)

R(t) = 1 – F(t)

Quantitative:

The reliability R(t) expresses the probability of surviving the operation 
duration [0, t] without an interruption by failure occurrence.
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Reliability

R(0) = 1. For an increasing time t > 0 the reliabilty decreases 
monotonically and approaches 0 for t→∞.

In practice, reliabilities close to 1 (and corresponding small times)
are most relevant. 
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Reliability Parameters (I)

Referring to the distribution function:

• (Total) failure probability

• First failure probability

• In-between failure probability

FL(t) or F(t)

FA(t)

FB(t)

regarding L

regarding A

regarding B

Referring to the complement of the distribution function:

• (Total) survival probability

• First survival probability

• In-between survival probability

RL(t) or R(t)

RA(t)

RB(t)

regarding L

regarding A

regarding B
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State

intact

defect

not 
repairable

The Random Variables 
L (t) – time to failure B (t) – repair time D (t) – whole live time

Time
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Reliability Parameters (II)

• Mean time to failure (MTTF)

• Mean time to the first failure (MTTFF)

• Mean time to repair (MTTR)

EL or E (L)

EA

ER or E (B)

Only for repairable systems the stationary availability (steady-state availability) V
is defined by

The availability V denotes the probability that a system is properly functioning at 
any point in time. The general (time dependent) availability V(t) can only be 
calculated after the introduction of a state model.

MTTRMTTF
MTTF

EE
EV

RL

L

+
=

+
=
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Random Variables

The failure rate is a random variable. 
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Reliability parameters (III)

Referring to the rate:

λL or λ

λA

λB

μ

zL(t)

zA(t)

zB(t, τ)

zS(t, τ)

The signs in the left column are used when the rate is constant over time.

• (Total) failure rate

• First failure rate

• In-between failure rate

• Repair rate
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Reliability Formulary

The Conditional Probability of Survival R(τ| t1) is the probability that a 
system which has survived a point of time t1, will also survive time t > t1.

• f(τ) density function 

• F(τ) failure probability

• R(τ) survival probability

• E mean time to failure (mean lifetime) 
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Simple example:
Two engineers, Engelbert and Engeline forecast the MTTF for a new server. 
Engeline assumes 30 months, while Engelbert believes in 12 months. Since both 
engineers have the same experience (the probability for a correct assumption is 
50% for each), an average value results:

The installed server does not fail once during a test time of 6 months. 

Due to this new experience

(a) how should one re-weight the experience of the two engineers? 

(b) what should the new adjusted MTTF value look like?

Solution:
Let Pr(t1) = Pr(t2) = 0.5 be a priori probabilities for a correct assumption of the 
engineers. 
If these are correct, then the probability of operating for six months without failure 
is: 
R(τ | ti) (assumed a failure rate is constant,

exponential distribution).
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Therefore the survival probability yields:

Engeline: Pr(τ | t1) = = 0.819

Engelbert: Pr(τ | t2) = = 0.607

New evaluation of the probability (a posteriori) that their forecast is correct:

Pr(τ1) =

Pr(τ2 ) =

MTTF = 0.574 * 30 months + 0.426 * 12 months = 22.3 months
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For a larger number of simultaneously implemented identical devises, it was 
discovered after one year that 5% of the devices failed, and were not repaired.

Exercise example:

1. What is the mean lifetime E of the devices if an exponential distribution
with parameter λ is assumed?

2. What is the mean lifetime E of the devices if an uniform distribution
with the parameters a and b is assumed and a = 0?
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To present (10-15 min):

• Description 
• Reliability parameters
• Illustration (in function of time/event)
• Application in Reliability Theory

Deadline: October 5th, 14:00
Eusgeld@mavt.ethz.ch

Continuous ones

1. Exponetial
2. Weibull
3. Normal
4. Log Normal
5. Uniform (Rectangular)

Most Relevant Distributions in Reliability Theory

Discrete ones

6. Poisson
7. Binomial (Bernoulli)
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Number Name Distribution
1 Binomial
2 Exponential
3 Log Normal
4 Normal
5 Poisson
6 Uniform
7 Weibull
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Example: Exponential Distribution

The exponential distribution is the only continuous memoryless random 
distribution.

The exponential distribution is the most common and simplest distribution 
function to model the reliability of components.

The failure rate and the time to failure are reciprocal.

Application: To estimate the reliability of componets or systems with constant 
failure rate.
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