

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Properties and characteristics of hazards

Hazard's characteristics	Description
Nature	Natural, socio-natural, technological, sociopolitical, man-made hazards
Magnitude	Only those occurrences that exceed some common level of magnitude are extreme
Location or geographical extent	Space covered by the hazardous event
Spatial dispersion	Pattern of distribution over the space in which its impact can occur
Speed of onset	Length of time between the first appearance of an event and its peak
Duration	Length of time over which a hazardous event persist, the onset to peak period
Frequency/Probability	The sequencing of events, ranging along a continuum from random to periodic. From the frequency the probability of return can be defined
	Source: S. Bouchon, after Gravley, 2001

EIGERBASSISche Technische Hechschule Zürich Swiss Federal Institute of Technology Zurich	Labriering Adaysis NULTOT FOR HASKY TECHNOLOGY Departement Maschinenbau & Verfahrenstechnik: Departement of Mechanical & Process Engineering:
Multicomponents System's V	/ulnerability (II)
The state (M1, M2) of the system ca described by the membership fraction	n alternatively be n
$\zeta = (M_1 - M_2) / (2M),$	(3)
if all system members are in state 1, members are in state 2, then $\zeta = -\frac{1}{2}$.	then $\zeta = \frac{1}{2}$, whereas if all
Equation (2) may be re-written as: $\partial f(\zeta)/\partial t = w_{21} (\zeta - 1/M) f(\zeta - 1/M) + w_2$ $- (w_{21} (\zeta) + w_{12} (\zeta)) f(\zeta)$	$_{1}(\zeta + 1/M) f(\zeta + 1/M) - (4)$
Spring 2010 / Prof. Dr. W. Kröger Risk Analysis of Highly-integrated S	vstems 16

Eidgenössische Technische Hachschule Zürich Swiss Federal Institute of Technology Zurich		Laboratory for Safety Analysis	DEpartement Maschinenbau & Verfahrenstechnik: Department of Mechanical & Process Engineering;
Real solutions	ζ		
Depending on the degree reflected in the coupling members - reflected in t temperature θ of the sys solutions ζ that may relat Number of Real Solutions	ee of interaction between syste constant U, and on the extern he field V, and also taking into stem, the equation may display ate to the overall system condit System Condition	m constitues al influence consideratio the followin ion:	nts (members), on all system on the ng number of real
1	Stable. Smooth transitions in pop state 1 and state. Low and/or ac	ulation memb	pership, between Inerability.
3, of which 2 identical	Critical. Sharp transitions in mem are possible. Either state 1 or sta improbable. System is critically	bership betw te 2 may sud vulnerable.	een states 1 and 2 denly become
3, all different from each other	Unstable. Sharp transitions in me 2 are possible. Frequency of occ comparable. System is dangero vulnerable.	embership bet urrence of sta pusly/ un-acc	tween states 1 and ates 1 and 2 are eptably
Spring 2010 / Prof. Dr. W. Kröger	Dick Analysis of Highly integrated Systems		18

against te	erroris	t and	d cyb	er att	acks	uce v	umera		5
most sensitive areas	avoid, reduce	redun- dancy	reserves	robust topology	extended respond times	ʻisland solutions' (cyber)	physical protection	spatial se- paration	other
choke points (tankers)	n.r.	-	(X)	-	-	-	-	-	political / military
wide-area gas & oil pipelines	n.r.	x	x	x	-	n.r.	n.r.	x	
large storage & treatment facilities	X (remote siting)	-	x	-	-	-	n.r.	n.r.	
hydro dams	n.r.	-	-	-	-	-	X (?)	-	military (?)
NPPs	n.r.	X*	-	-	x	x	x	Х*	
distribution networks (UCTE)	-	×	x	x	x	x	n.r.	x	
n.r. not realistically	-1	* at system	ns' level	1	-1		<u>.</u>	I	<u>.</u>

