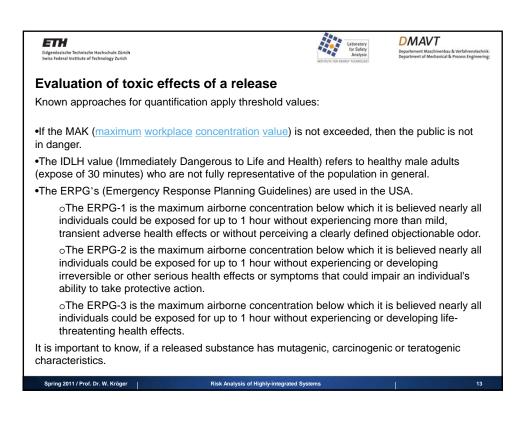
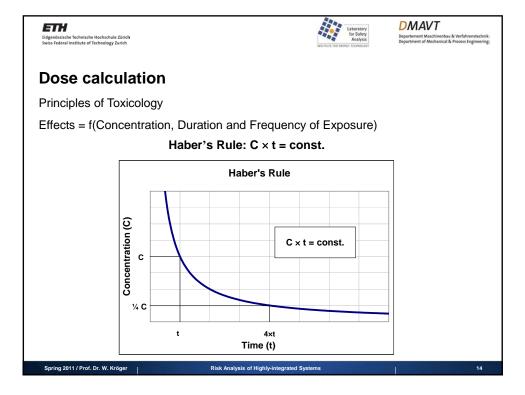
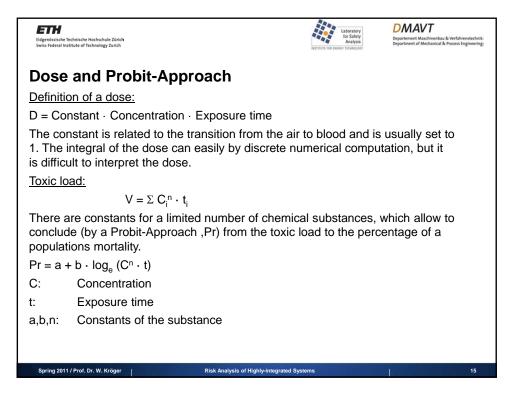


mössische Technische Hochschule Zürich Federal Institute of Technology Zurich						Laboratory for Safety Analysis Y TECHNOLOGY	Dep		T hinenbau & Verfahi hanical & Process B
elected Relea	se Cate	gories	and So	ource Te	erm Va	alues			
Release Category,		Release Characteristics			Release Fractions of Core Inventory				
Description and Frequency	Release starts [hrs]	Duration [hrs]	Warning Time [hrs]	Energy [MBTu/hr]	Height [m]	Xe-Kr	I	Cs-Rb	Ba-Sr
UK-1 Containment bypass 2.4e -9	1	3	0	0.3	10	9e -1	7e -1	5e -1	6e -2
UK-2 Early containment faie Steam explosion 4.0e -10	1	0.5	0	20	10	9e -1	7e -1	4e -1	5e -2
UK-5 Late containment faie Vaporisation release 8.0e -9	8	0.5	4	20	10	1e 0	6e -2	3e -1	4e -2
UK-6 Late containment faie No vaporisation release 4.2e -9	12	0.5	8	20	10	9e -1	9e -3	2e -1	2e -2
L	1	1		<u> </u>			1	<u> </u>	11
ring 2011 / Prof. Dr. W. Kröger		Risl	Analysis of Highl	y-integrated Syst	ems				

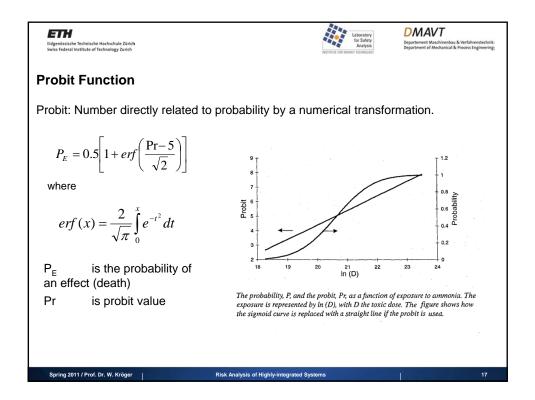
	is substances	
	Specification factors	Influencing parameters
Release	Begin and duration Type and size of leakage Number of leaks, rate, location of the leakage Pool size Evaporation rate	Cause of the leakage Aggregate state of the released substance - gaseous, liquid, in two-phase Total release minus spontaneous evaporating and aerosol forming quantity Evaporation mechanism (additional heat)
Dispersion	Concentration of the released substance at place X	Release type / source - spontaneous, continuous Density of the gas cloud > air (dense cloud) = air (neutral cloud) < air (buoyant cloud) Ground conditions Wind characteristics Atmospheric conditions
Conse- quence	Consequence at place X	Acute toxicity Fire / radiated heat Explosion / pressure wave
Expo- sure	Exposure	Population density Time of exposure Degree of protection (sheltering / staying outdoors

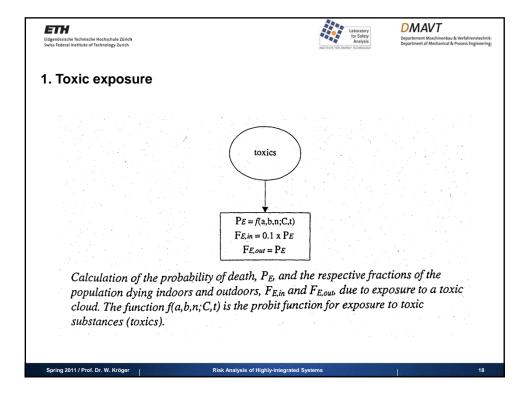

genössische Technische Hochschule Zürich iss Federal Institute of Technology Zurich		INSTITUTE FOR INFRG	101 Sality Departement Maschinenbau & Verfahree Analysis Department of Mechanical & Process Eng Y TICHNOLOOY
Dispersior	1		
	Dispersion		Measures
Air	 Fast, depending on Wind speed / direction Atmospheric conditions Topography 	Mean wind speeds in Zürich SMA: 2.35m/s Jungfrau Joch: 8.34m/s	Staying indoors Keeping windows and doors shut Nourishment control
Flowing water	Moderate, depending on Flow speed River bed profile 	Mean flow speed of Rhine :1.1m/s Elbe :0.8m/s	Stopping ground water enrichment
Groundwater	Slow, depending on Porosity 	Flow speed: 1m/day	Stopping ground water pump
Standing water	Slow, depending on Inflow / outflow rate Depth, size 	Water renewable time Lake Konstanz: 4.5 years Lake Sempach :15 years	Stopping ground water enrichment
Soil	Slow, depending on Porosity Soil horizons 	Diffusion	Soil decontamination, dispose

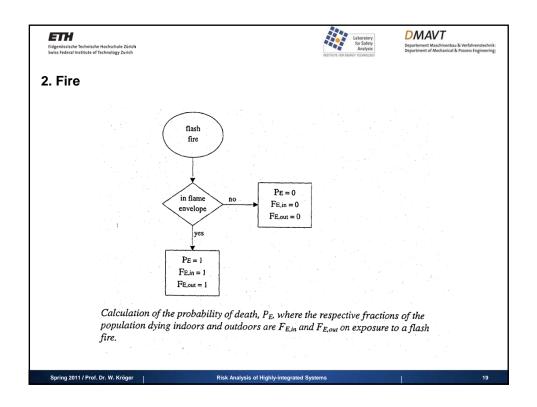


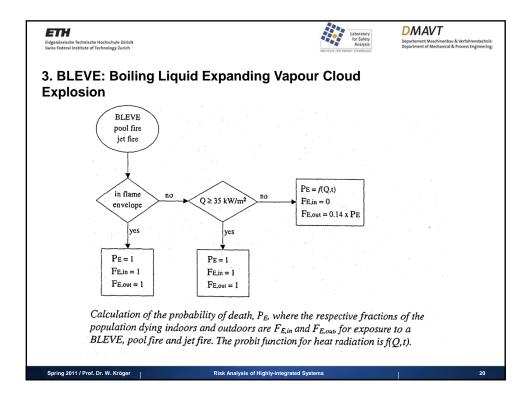


Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich		Laboratory for Safety Analysis INSTITUTE FOR ENERGY TECHNOLOGY	Departement Maschinenbau & Verfahrenstechnik: Department of Mechanical & Process Engineering;
Representing r	results of a risk analysis		
 Risk is represented of an undesired et al. 	ed by the parameters frequency a event	and consequence	
	of an event is estimated by the us ssments and models (FMEA, Eve		
	nces for the public are estimated b dose-effect models.	by the use of	
consequence dia	e risk analysis are often represent grams. The cumulative frequency otted against each other. For a giv ncy can be read out of the diagram	and the	
Spring 2011 / Prof. Dr. W. Kröger	Risk Analysis of Highly-integrated	Systems	11

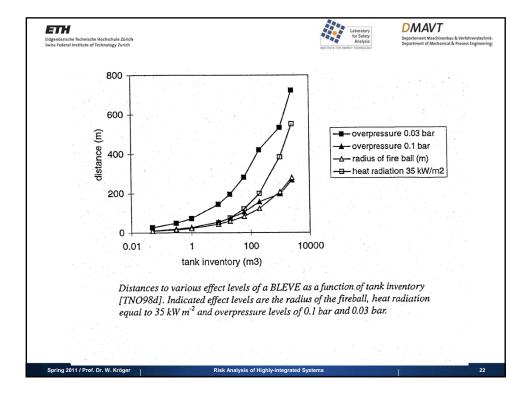

Eigenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich		Laboratory for Safety Analysis INSTITUTE FOR ENERGY TECHNOLOGY	DEPARTMENT Departement Maschinenbau & Verfahrenstechnik: Department of Mechanical & Process Engineering;
Modelling consequences a	nd damage of ch	nemical subs	tances
The Probit-Approach			
Exposure and effects following re substances into the environment		on of a danger	ous
Parameters used to express the	lethal effects are:		
• <u>The probability of death, P_e Individual Risk</u> contour.	– of an individual o	dying from expo	osure used for
• <u>The fraction of the population</u> at a certain location due to a used in the calculation of the	a given exp o sure (ir		
The following approach is based	on TNO methodolo	ogy.	
Spring 2011 / Prof. Dr. W. Kröger	Risk Analysis of Highly-integrated Sys	stems	12

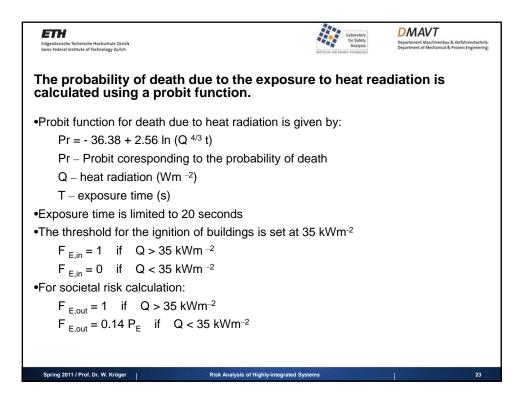


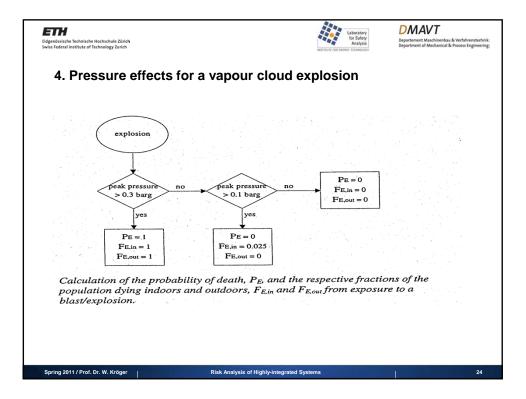


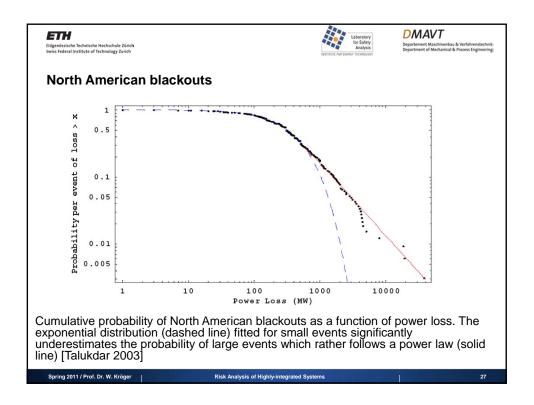


Eidgenössische Techni Swiss Federal Institute	ische Hochschule Zürich e of Technology Zurich		INSTITUTE F	Laboratory for Safety Analysis or ENERGY TECHNOLOGY	Departement Maschinenbau & Verfahrenstechnik: Department of Mechanical & Process Engineering;
		а	b	n	_
	Substance				
	Acrolein	-4.1	1	1	
	Acrylonitrile	-8.6	1	1.3	
	Allylalcohol	-11.7	1	2	
	Ammonia	-15.6	1	2	
	Azinphos-methyl	-4.8	1	2	
	Bromine	-12.4	1	2	
	Carbon monoxyde	-7.4	1	1	
	Chlorine	-6.35	0.5	2.75	
	Ethylene oxyde	-6.8	1	1	
	Hydrogen chloride	-37.3	3.69	1	
	Hydrogen cyanide	-9.8	1	2.4	
	Hydrogen fluoride	-8.4	1	1.5	
	Hydrogen sulfide	-11.5	1	1.9	
	Methyl bromide	-7.3	1	1.1	
	Methyl isocyanate	-1.2	1	0.7	
	Nitrogen dioxide	-18.6	1	3.7	
	Parathion	-6.6	1	2	
	Phosgene	-10.6	2	1	
	Phosphamidon	-2.8	1	0.7	
	Phosphine	-6.8	1	2	
	Sulfur dioxide	-19.2	1	2.4	
	Tetraethyllead	-9.8	1	2	
Spring 2011 / Pr	of. Dr. W. Kröger	Risk Analysis of Highly	-integrated Systems		16









Eidgenössische Technisch Swiss Federal Institute of			Laboratory for Safety Analysis Institute Fee Interest Technology	DEPART Departement Maschinenbau & Verfahrenstechnik: Departement of Mechanical & Process Engineering:
Populat	tion			
In some		ered that the de	nt should be surve ensity is of 2.4 per	-
		f _{pop.in}	f _{pop.out}	
	Daytime	0.93	0.07	
	Night – time	0.99	0.01	
			I	
Spring 2011 / Prof.	Dr. W. Kröger	Risk Analysis of Highly-integ	grated Systems	25

viss Federal Instit	nische Hochschule Zürich ate of Technology Zurich interruption i	in la	rge ar	ea netw	DMAVT Departement Matchinenbau & Verfahrens Departement Matchinenbau & Verfahrens Departement of Mechanical & Process Tegit orrks: electricity blackouts
	Blackout	Load loss [GW]	Duratio n [h]	People affected	Main causes
Aug. 14, 2003	Great Lakes, NYC	~ 60	~ 16	50 Mio	Inadequate right-of-way maintenance, EMS failure, poor coordination among neighbouring TSOs
Aug. 28, 2003	London	0,72	1	500 000	Incorrect line protection device setting
Sept. 23, 2003	Denmark / Sweden	6,4	~ 7	4,2 Mio.	Two independent component failures (not covered by N-1 rule)
Sept. 28, 2003	Italy	~ 30	up to 18	56 Mio.	High load flow CH-I, line flashovers, poor coordination among neighbouring TSOs
July 12, 2004	Athens	~ 9	~ 3	5 Mio.	Voltage collapse
May 25, 2005	Moscow	2,5	~ 4	4 Mio	Transformer fire, high demand leading to overload conditions
June 22, 2005	Switzerland (railway supply)	0.2	~ 3	200 ⁻ 000 passengers	Non-fulfilment of the N-1 rule, wrong documentation of line protection settings, inadequate alarm processing
Aug. 14, 2006	Tokyo	?	~ 5	0.8 Mio households	Damage of a main line due to construction work
Nov. 4, 2006	Western Europe ("controlled" line cut off)	~ 14	~ 2	15 Mio. households	High load flow D-NL, violation of the N-1 rule, poor inter TSO- coordination
Nov. 10, 2009	Brazil, Paraguay	~14	~4	60 Mio	Short circuit on key power line due to bad weather, Itaipu hydro (18 GW) shut down
Spring 2011 /	Prof. Dr. W. Kröger	18	Risk	Analysis of Highly-i	ntegrated Systems

