

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header></section-header>	Eldger Swiss	mössische Technische Hachschule Zärich Federal Institute of Technology Zurich	Laboratory for Safety Analysis	DEMANT Departement Maschinenbau & Verfahrenstechnik: Department of Mechanical & Process Engineering:						
<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><table-container></table-container></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header>	Hazard and Operability Study (HAZOP)									
<list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item>	Go	als and purposes of a HAZOP:								
 identification of hazards within the system and caused by the system identification of causes of operational disturbances and deviations in the production, which can lead to defective products Fulfilment of regulatory requirements and recommendations Working steps of a HAZOP: Preparation: definition of focus of the analysis, guide words, process variables, etc. Selection of the team members Collection of plant data and information Completing the HAZOP-form which summarizes the results 	• (Qualitative analysis of processes in a chemical engineering system (continuous or "batch" operation) based on given guide words, which highlight causes and consequence of deviations from desired physical parameters, i.e. 								
 identification of causes of operational disturbances and deviations in the production, which can lead to defective products Fulfilment of regulatory requirements and recommendations Working steps of a HAZOP: Preparation: definition of focus of the analysis, guide words, process variables, etc. Selection of the team members Collection of plant data and information Completing the HAZOP-form which summarizes the results 	0	$_{\odot}$ identification of hazards within the system and caused by the system								
 Fulfilment of regulatory requirements and recommendations <u>Working steps of a HAZOP</u>: Preparation: definition of focus of the analysis, guide words, process variables, etc. Selection of the team members Collection of plant data and information Completing the HAZOP-form which summarizes the results 	0	 identification of causes of operational disturbances and deviations in the production, which can lead to defective products 								
 Working steps of a HAZOP: Preparation: definition of focus of the analysis, guide words, process variables, etc. Selection of the team members Collection of plant data and information Completing the HAZOP-form which summarizes the results 	• F	Fulfilment of regulatory requirements and recommenda	ations							
 Preparation: definition of focus of the analysis, guide words, process variables, etc. Selection of the team members Collection of plant data and information Completing the HAZOP-form which summarizes the results 	<u>Wo</u>	orking steps of a HAZOP:								
 Collection of plant data and information Completing the HAZOP-form which summarizes the results 	1. 2.	Preparation: definition of focus of the analysis, guide Selection of the team members	words, process	variables, etc.						
Completing the HAZOF-form which summarizes the results Spring Senester 2011 Risk Analysis of Highly-integrated Systems 2	3. ⊿	Collection of plant data and information	roculto							
Spring Semester 2011 Risk Analysis of Highly-integrated Systems 2	4.	Completing the HAZOF Hold which summarizes the	1650115							
		Spring Semester 2011 Risk Analysis of Highly-integrated Syste	ms	2						

Eigenössische Technische Hechschule Zärich Swiss Federal Institute of Technology Zurich	Laboratory for Satety Analysis NUTIFUT FOR INNEY TOOMS GO	DEpartement Maschinenbau & Verfahrenstechnik: Department of Mechanical & Process Engineering;
(1) Preparation		
Identification of deviations from the targe variables, e.g.	t state by linking guide	words with process
 No/less/more mass flow 		
More/less system constituents (corrosi	on products, multi pha	se flow, etc.)
 Other operational states than foreseer operation. 	i, e.g. maintenance inst	tead of normal
(2) Selection of the team members (<u>example)</u>	
Independent chairman, expert in HAZ)P	
 Company experts: design engineer, pr instrument design engineer 	ocess engineer, comm	issioning manager,
 About 5 to 7 persons depending on fac realisation. 	cility size, type and/or s	tate of design
Spring Semester 2011 Risk Analysis of	Highly-integrated Systems	3

Functions	Types of failure	
Closing	Fails open Only partly closed	
Opening	Fails closed Only partly opened	
Remain closed	Opens completely Partly opens	
Remain opened	Closes completely Partly closes	
Enclose a medium	External leakage Internal leakage	

lassi			
	fication o	f consequences	
Class	Consequence	The failure of a unit leads to	1
I	Catastrophic	a total failure of the system and may cause deaths]
II	Critical	major system damage and may cause severe injuries	
111	Marginal	minor system damage and may cause minor injuries	1
			1
assi	Minor	f the event frequencies	1
assi	Minor	f the event frequencies	1
IV assi Class	fication o	The event frequencies Failure frequency A failure in less than 10 ⁴ hours of operation	1
IV ASSI Class Freque Reason	Minor fication o	In the event frequencies Failure frequency 1x failure in less than 10 ⁴ hours of operation 1x failure between 10 ⁴ and 10 ⁵ hours of operation]
IV ASSI Class Freque Reason Rare	Minor fication o	The event frequencies Failure frequency 1x failure in less than 10 ⁴ hours of operation 1x failure between 10 ⁴ and 10 ⁵ hours of operation 1x failure between 10 ⁵ and 10 ⁷ hours of operation	

			ī	Temperature 8°	ons:		Plans, system specifications	<u>on</u> : n s,
Nr.	Unit	Failure mode of <i>(b)</i>	Class: Frequency of (c)	Failure recognition of (c)	Countermeasure s against (c)	Failure effect of (c) on the adjoined units	Comments (g)	Class: Effect / facility state
'a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	<i>(i)</i>
2								

HAZOP	FMEA
→ Hazards / operational	→ Possible failure modes of single
disturbances	units and related effects
 Definition of guide word	 s / Listing of units / failure types Classification of system states
process variables Continuous / discontinuo	and effects Classification of event
processes	frequencies
 Entries in tables; only di chains 	screte failures are considered, no event

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich			Laboratory for Safety Analysis INSTITUTE FOR ENERGY TECHNOLOGY	DEPARTMENT Departement Maschinenbau & Verfahrenstechnik: Department of Mechanical & Process Engineering;
Example: Maste	er Logic Diagr	ram		
	OGI OF COUTAINMENT P STORAGE TANK DE OI PHLOTADRED ICB CB COURSECUTION COURSECUTION COURSECU	UNDERPRESSURE DK	EXTERNAL LOADING EXTERNAL OR RATURAL PRENCHIAR BREATINGUARE EARTINGUARE EARTINGUARE 0	
Spring Semester 2011	Risk Analysis	of Highly-integrated Sys	stems	16