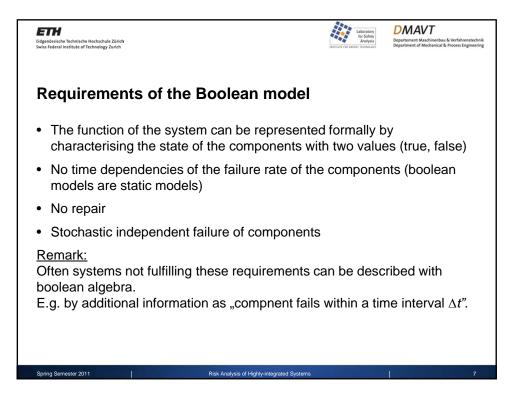
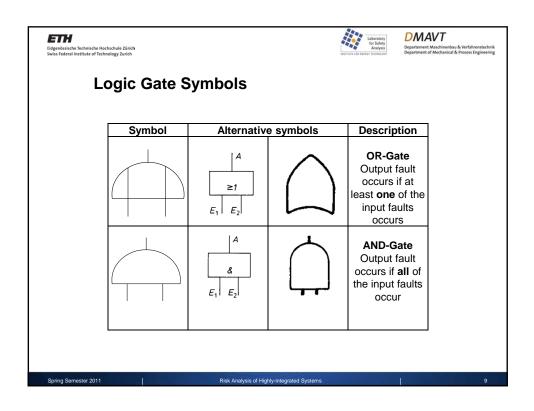


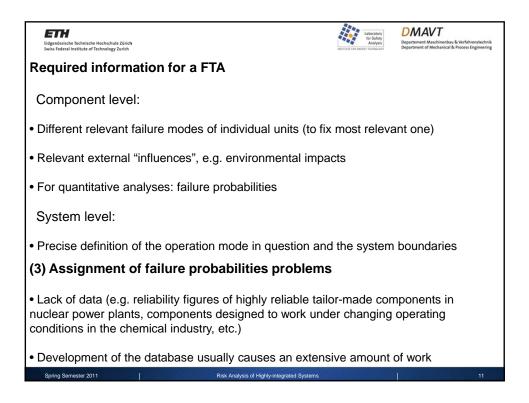
	H Ssisiche Technische Hochschule Zürich ederal Institute of Technology Zurich		for Safety Analysis	DEPARTEMENT Departement Maschinenbau & Verfahrenstechn Department of Mechanical & Process Engineeria
Boo	lean Algebra			
	Statement	Description	Statement	Description
	$\begin{array}{c} X \cap Y = X \cap Y \\ X \cup Y = X \cup Y \end{array}$	commutativity	$\overline{\overline{X}} = X$	
	$X \cap (Y \cap Z) = (X \cap Y) \cap Z)$ $X \cup (Y \cup Z) = (X \cup Y) \cup Z)$	associativity	$\left(\overline{X \cap Y}\right) = \overline{X} \cup \overline{Y}$ $\left(\overline{X \cup Y}\right) = \overline{X} \cap \overline{Y}$	de-Morgan Theorem
	$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$ $Z)$ $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$	distributivity	$(X \cup Y) = X \cap Y$ $O \cap X = O$ $O \cup X = X$	
	$\begin{array}{c} X \cap X = X \\ X \cup X = X \end{array}$	Idempotent	$L \cap X = X$ $L \cup X = L$	
	$\begin{array}{c} X \cap (X \cup Y) = X \\ X \cup (X \cap Y) = X \end{array}$	absorption	$X \cup (\overline{X} \cap Y) = X \cup Y$	
	$X \cup \overline{X} = L$ $X \cap \overline{X} = O$		$X \cap (\overline{X} \cup Y) = X \cap Y$	
Spring	g Semester 2011	Risk Analysis of Highly-integrated S	ystems	6

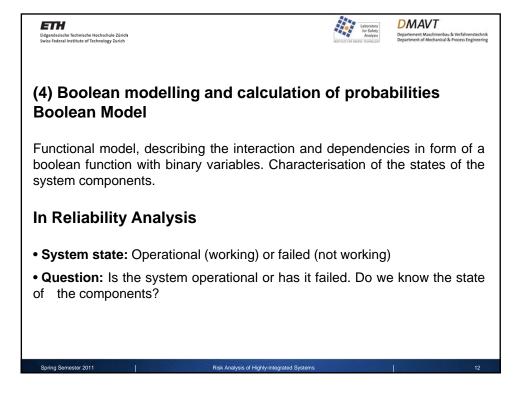


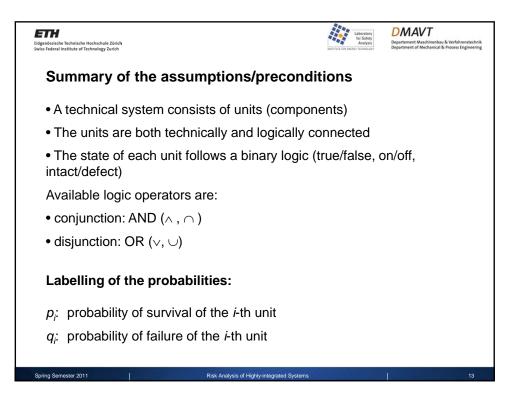
Eigenössiche Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich	Laboratory for Safety Analysis without rol surger researce	DEpartement Maschinenbau & Verfahrenstechnik Department of Mechanical & Process Engineering	
Boolean Function			
Mapping <i>f</i> between a dependent variable y and i variables x_0, x_1, \dots, x_{n-1}	ndependent	boolean	
$y = f(x_0, x_1,, x_{n-1}) = f(\underline{x})$	$\forall x_i = \begin{cases} 1 \\ 0 \end{cases}$	$; y = \begin{cases} 1 \\ 0 \end{cases}$	
Example Exclusive-Or $y = (x_0 \land \overline{x}_1) \lor$	$(\overline{x}_0 \wedge x_1)$		
<u>Remark:</u> •In Boolean Algebra we mostly use the operators ∧ and ∨ instead of the set operators ∩ and ∪. •Often we do not use the AND operator, but note it as "." ($X \land Y \equiv X \cdot Y$)			
Spring Semester 2011 Risk Analysis of Highly-integrated Systems		8	

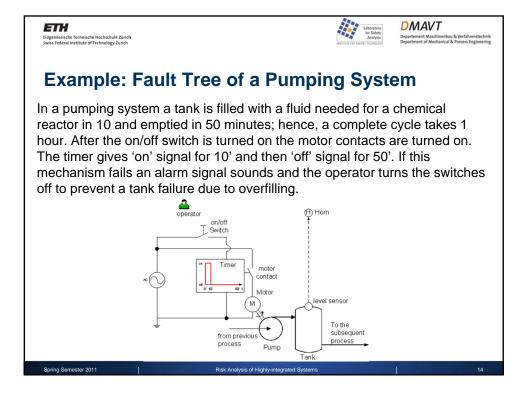


rimary even	t, intermediate eve	ent and trar	nsfer symbols
Symbol	Description	Symbol	Description
T Text	TOP EVENT (failed system state)	\bigcirc	UNDEVELOPED EVENT (of insufficient conse- quence or information is unavailable)
Text	INTERMEDIATE EVENT (fault event occurring because of antecedent causes)		TRANSFER IN (input from a further developed tree, e.g. or a different page)
	BASIC EVENT (basic initiating fault requiring no further de- velopment)	$\sum_{i=1}^{n}$	TRANSFER OUT (output that is further processed in an other tree)





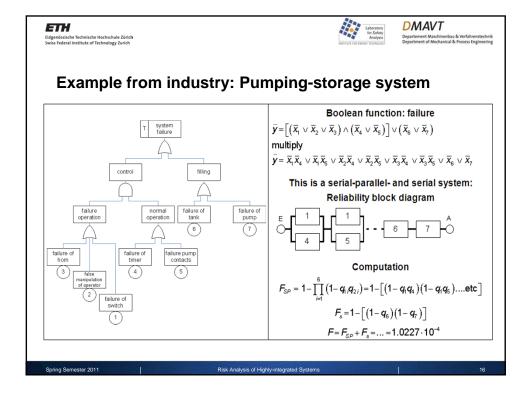




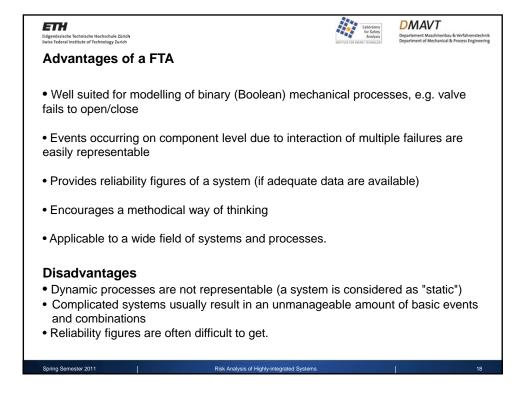
Jnit or functional components	Survival	Failure
	Probability <i>p</i> _i	Probability q _i
Electromechanical parts: switches, imer, horn, contacts	0.9995	5·10 ⁻⁴
Passive element: storage tank	0.999999	10 ⁻⁶
Active element: pump	0.9999	10-4
,Functional element human being": operator	0.99973	2.7·10 ⁻⁴

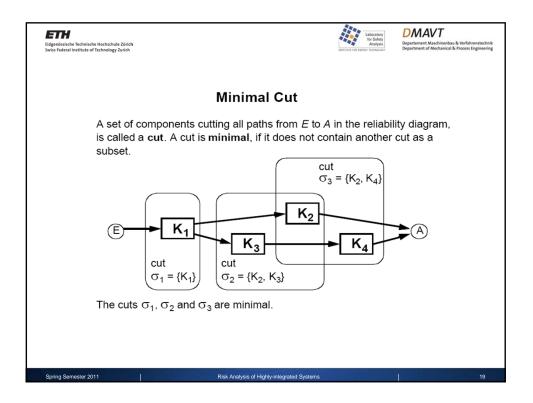
Risk Analysis of Highly-integrated Syster

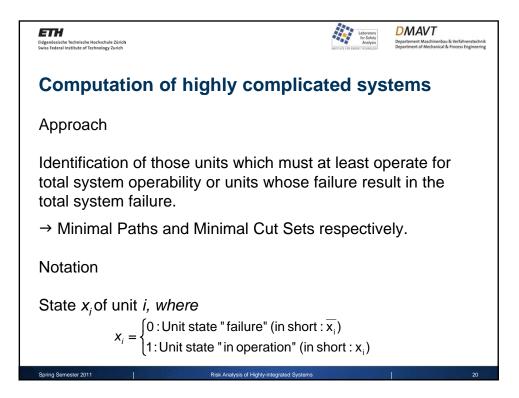
Spring Semester 2011

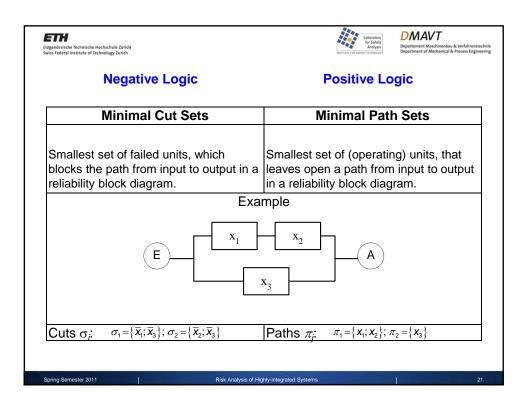


Eligenösische Technische Hachschule Zürich swiss Federal Institute of Technology Zurich	Liberatory for Statey national Tool Natary Liberatory national Tool Natary Liberatory			
Simplifications for simple syste	ems only			
$\Pr(A \cap B) = \Pr(A) \cdot \Pr(B)$	$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$			
	Approximation with small			
	probabilities:			
	$\Pr(A \cup B) \approx \Pr(A) + \Pr(B)$			
Note For any number of random events Poincaré is applied	A_i (<i>i</i> = 1, 2,, <i>n</i>), the equation after			
$\Pr\left(\bigcup_{i=1}^{n}A_{i}\right) = \sum_{i=1}^{n}\Pr\left(A_{i}\right) - \sum_{i_{1}i_{2}=1}^{n}\Pr\left(A_{i_{1}} \cap A_{i_{2}}\right) + \sum_{i_{1}i_{2},i_{3}=1}^{n}\Pr\left(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}\right) + \dots + (-1)^{n-1}\Pr\left(A_{i} \cap A_{2} \cap \dots \cap A_{n}\right)$				
Rare event approximation for small $Pr(A_i)$				
$\sum_{i=1}^{n} \Pr(A_{i}) - \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr(A_{i} \cap A_{j}) \leq \Pr\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} \Pr(A_{i})$				
Spring Semester 2011 Risk An	alysis of Highly-integrated Systems 17			

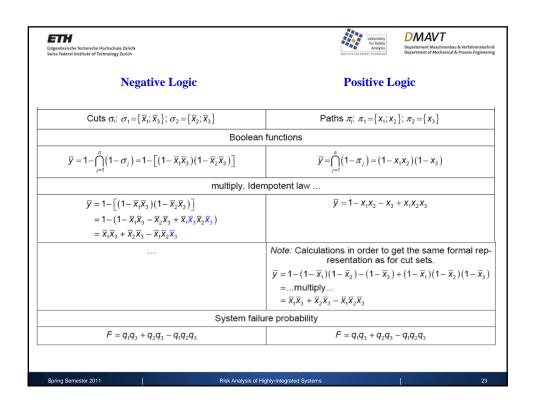








EIGenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich	Laboratory for Skity Analysis Natives Toologor Departement Maschinenbau & Verfahrenstechnik Departement Maschinenbau & Verfahrenstechnik Departement of Mechanical & Process Engineering	
Negative Logic	Positive Logic	
Each cut set <u>i</u> consists of the intersection of the mini- mum number of failed units required to cause the sys- tem failure, i.e.	Each path set <i>j</i> consists of the intersection of the minimum number of operating units required to ensure system operation, i.e.	
$\sigma_i = \bigcap_{k=1}^{l} \overline{X}_k$	$\pi_j = \bigcap_{m=1}^r X_m$	
System failure:: union of cut sets σ_{ℓ}	System operation : union of paths π _j	
$\overline{y} = \bigcup_{j=1}^{n} \sigma_{j}$	$y = \bigcup_{j=1}^{s} \pi_j$	
Boolean algebra: De Morgan's Theoreme		
$\overline{\mathbf{y}} = 1 - \bigcap_{j=1}^{n} (1 - \sigma_j) = 1 - \left[(1 - \overline{\mathbf{x}}_1 \overline{\mathbf{x}}_3) (1 - \overline{\mathbf{x}}_2 \overline{\mathbf{x}}_3) \right]$	$\bar{y} = \bigcap_{j=1}^{s} (1 - \pi_j) = (1 - x_1 x_2)(1 - x_3)$	
multiply, Idempotent law		
$\overline{y} = 1 - \left[\left(1 - \overline{x}_1 \overline{x}_3 \right) \left(1 - \overline{x}_2 \overline{x}_3 \right) \right]$	$\overline{y} = 1 - x_1 x_2 - x_3 + x_1 x_2 x_3$	
$=1-\left(1-\overline{\mathbf{X}}_{1}\overline{\mathbf{X}}_{3}-\overline{\mathbf{X}}_{2}\overline{\mathbf{X}}_{3}+\overline{\mathbf{X}}_{1}\overline{\mathbf{X}}_{3}\overline{\mathbf{X}}_{2}\overline{\mathbf{X}}_{3}\right)$		
$= \overline{X}_1 \overline{X}_3 + \overline{X}_2 \overline{X}_3 - \overline{X}_1 \overline{X}_2 \overline{X}_3$		
Spring Semester 2011 Risk Analysis of His	phty-integrated Systems 22	



EIGgenösische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich	Liborary Activity Activity NUMERIC DE KLAPE TOORDOOR NUMERIC DE KLAPE TOORDOOR NUMERIC DE KLAPE TOORDOOR
Correlation between Fault Tree und minim A minimum cut set is defined as the smalle occur, will cause the top event to occur. The a Fault Tree.	est combination of failures which, if they all
Fault Tree	Algorithm
$\begin{array}{c} \text{top event:}\\ \text{system failure}\\ \hline \\ \hline$	We start with the top event gate inputs and substitute and expand until the minimum cut set expression for the top event is obtained. AND gate inputs are listed in a row. Each input of an OR gate results in an addi- tional row, whereby basic events remain. • Row: Idempotent Iaw • Column: Absorption Iaw Z1 \lor (Z1·Z2) = Z1 Example Step 1: a row (because of the AND gate) {A, \bar{x}_3 } Step 2: add a row (because of two OR gate inputs) and substitute A { $\{\bar{x}_i; \bar{x}_3\}$ { $\bar{x}_2; \bar{x}_3$ } q.e.d.
Spring Semester 2011 Risk Analysis of Hig	hly-integrated Systems 24

