

statistically	probabilistically		
Risk = expected value ≥ 0	Risk = related probability		
Example: throwing a co	bin ("heads" = "0" and "tails" = "1")		
2	$Risk = Pr(X) = Pr(X E) \cdot Pr(E)$		
$E(X) = \overline{\Sigma} x_{i} \cdot \vec{P} r(X = x_{i})$	Pr(E): Probability that a coin will be thrown		
i=1	Pr(X): Probability that "1" occurs		
E(X): Expected value	Pr(X E): Probability of "1" under the condition that a coin		
X: Probability variable "heads"/"tails"	has been thrown		
Pr(●): Relative frequency	$Pr(X) = Pr(X E) \cdot Pr(E) = 0.5 \cdot 1 = 0.5$		
	The probability of heaving "1" is 0.5		
Observation:			
$1 \vec{P}r(X=x_i) = \frac{550}{1} = 0.55$	Axiom system of Kolmogoroff:		
$x_i = \begin{cases} 1000 \\ 450 \end{cases}$	1. $0 \le \Pr(x) \le 1$		
0 $\vec{P}r(X=x_i) = \frac{430}{1000} = 0,45$	2. Pr(sure event) = 1 3. $Pr\begin{pmatrix}n\\Yx_i\end{pmatrix} = Pr\begin{pmatrix}\sum_{i=1}^{n}x_i\end{pmatrix}$		
(1000			
\Rightarrow E(X) = 0,55			
The expectation" for 1" is closer to 100%			

Eigenössische Technische Hachschule Zürich Swiss Federal Institute of Technology Zurich		Laboratory for Safety Analysis INSTITUTE FOR ENERGY TECHNOLOGY	DEPARTMENT Departement Maschinenbau & Verfahrenstee Department of Mechanical & Process Enginee				
Structure and "Levels" of a PRA for Nuclear Power Plants							
Plant response to initiating events	Level 1	Frequency o damage (CI	of core DF)				
Physical effects, containment response	Level 2	Frequency a radionuclide (source term	and amount of es released n, PDF)				
Athmospheric dispersion, potential and expected doses, dose-effect/risk relation	Level 3	Frequency a of environm health effec	and quantities ental and ts				

Eidgenössische Technische Hechschule Zürich Swiss Federal Institute of Technology Zurich		NETITIO	Labora for Si Ana ron ENERGY TECH	Itory Ifery Departement Maschienbau & Verfahrenstechnik: Department of Mechanical & Process Engineering:				
GRS-Results Level 1 PRA, German NPP GKN-II, Full Power								
Initiating Events	Initiating Events		•	Core damage state				
Loss of main feed wate	r 26%		<5%					
Loss of main heat sink	20%			<5%				
Loss of preferred powe	r 17%			10%				
Very small primary leak	s 16%			53%				
SBLOCA via stuck-open S	RV 5%			15%				
Steam generator tube rupt	ture	4%		7%				
Total expected frequency of system damage state without AM: 8.5x10 ⁻⁶ /year Total expected frequency of core damage state with AM: 2.5x10 ⁻⁶ /year								
	Expected frequency of system damage state / year		E	Expected frequency of core damage state / year				
Mean	8.5x10 ⁻⁶		2.5x10 ⁻⁶					
5% Fractile	1.6x10 ⁻⁶		4.4x10 ⁻⁷					
50% Fractile (median)	4.6x10 ⁻⁶		1.5x10 ⁻⁶					
95% Fractile	2.1x10⁻⁵		7.3x10 ⁻⁶					
"Point Value"*	5.0x10 ⁻⁶		1.7x10 ⁻⁶					
Spring Semester 2011		Risk Analysis of Highly-integrated Systems		15				

DMAVT Departement Maschinenbau & Verfahrenstechnik Department of Mechanical & Process Engineering

Baltimore Howard Street Tunnel

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ing Semester 201

Broken 40-inch-diameter water main (@National Transportation Safety Board) In addition to its expected effects, this disaster caused a cascading degradation of infrastructure components not previously anticipated. For example, the tunnel fire caused a water main to break above the tunnel, shooting geysers 20ft into the air. The break caused localized flooding which exceeded a depth of three feet in some areas.

The interrelationship among infrastructures and its potential for cascading effects were evident on July 19, 2001, when a 62-car freight train carrying hazardous chemicals derailed in Baltimore's Howard Street Tunnel.

Copyright © 2001, The Associated Press

sis of Highly-integrated Syst

