

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich			
Boolean Algebra	2 4 2 12		
Statement	Description	Statement	Description
$\begin{array}{c} X \cap Y = X \cap Y \\ X \cup Y = X \cup Y \end{array}$	commutativity	$\overline{\overline{X}} = X$	
$\begin{array}{l} X \cap (Y \cap Z) = (X \cap Y) \cap Z) \\ X \cup (Y \cup Z) = (X \cup Y) \cup Z) \end{array}$	associativity	$\left(\overline{X \cap Y}\right) = \overline{X} \cup \overline{Y}$ $\left(\overline{X \cup Y}\right) = \overline{X} \cap \overline{Y}$	de-Morgan Theorem
$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$ $Z)$ $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$	distributivity	$ \begin{array}{c} O \cap X = O \\ O \cup X = X \end{array} $	
$\begin{array}{c} X \cap X = X \\ X \cup X = X \end{array}$	Idempotent	$L \cap X = X$ $L \cup X = L$	
$\begin{array}{c} X \cap (X \cup Y) = X \\ X \cup (X \cap Y) = X \end{array}$	absorption	$X \cup (\overline{X} \cap Y) = X \cup Y$	
$X \cup \overline{X} = L$ $X \cap \overline{X} = O$		$X \cap (\overline{X} \cup Y) = X \cap Y$	
FS 2010	Laboratory for Safet	y Analysis	

Either State				
Boolean Function				
Mapping <i>f</i> between a dependent variable y and independent boolean variables x_0, x_1, \dots, x_{n-1}				
$y = f(x_0, x_1, \dots, x_{n-1}) = f(\underline{x}) \qquad \forall \qquad x_i = \begin{cases} 1 \\ 0 \end{cases}; \ y = \begin{cases} 1 \\ 0 \end{cases}$				
Example Exclusive-Or $y = (x_0 \land \overline{x}_1) \lor (\overline{x}_0 \land x_1)$				
<u>Remark:</u> •In Boolean Algebra we mostly use the operators \land and \lor instead of the set operators \cap and \cup . •Often we do not use the AND operator, but note it as "." (<i>X</i> ∧ <i>Y</i> ≡ <i>X</i> . <i>Y</i>)				
FS 2010 Laboratory for Safety Analysis 8				

Primary event intermediate eve	nt and tran	sfer symbols
Frinaly event, intermediate eve		
Symbol Description	Symbol	Description
T Text (failed system state)	\bigcirc	UNDEVELOPED EVENT (of insufficient conse- quence or information is unavailable)
Text INTERMEDIATE EVENT (fault event occurring because of antecedent causes)		TRANSFER IN (input from a further developed tree, e.g. on a different page)
BASIC EVENT (basic initiating fault requiring no further de- velopment)		TRANSFER OUT (output that is further processed in an other tree)

Unit or functional components	Survival Probability <i>p_i</i>	Failure Probability q
Electromechanical parts: switches, timer, horn, contacts	0.9995	5·10 ⁻⁴
Passive element: storage tank	0.999999	10 ⁻⁶
Active element: pump	0.9999	10 ⁻⁴
"Functional element human	0.99973	2.7·10 ⁻⁴

Simplifications for simple systems only $\frac{\Pr(A \cap B) = \Pr(A) \cdot \Pr(B)}{\Pr(A \cap B) = \Pr(A) \cdot \Pr(B)} \frac{\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)}{\operatorname{Approximation with small}} \\ \frac{\Pr(A \cap B) = \Pr(A) \cdot \Pr(B)}{\Pr(A \cup B)} \approx \Pr(A) + \Pr(B)$ Note For any number of random events A_i (i = 1, 2, ..., n), the equation after Poincaré is applied $\Pr\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \Pr(A_i) - \sum_{\substack{i_1i_2=1\\i_1 < i_2}}^n \Pr(A_{i_1} \cap A_{i_2}) + \sum_{\substack{i_1i_2,i_3=1\\i_1 < i_2}}^n \Pr(A_{i_1} \cap A_{i_2} \cap A_{i_3}) + ... + (-1)^{n-1} \Pr(A \cap A_{i_2} \cap A_{i_n})$ Rare event approximation for small $\Pr(A_i)$ $\sum_{i_n}^n \Pr(A_i) - \sum_{i=1}^{n-1} \sum_{j=i+1}^n \Pr(A_i \cap A_j) \leq \Pr\left(\bigcup_{i=1}^n A_i\right) \leq \sum_{i_n}^n \Pr(A_i)$

Labo

tory for Saf

FS 2010

Figenovusche Technosche Hochschele Zarich Swiss Federal Institute af Technology Zurich					
Negative Logic	Positive Logic				
Each cut set <i>i</i> consists of the intersection of the mini- mum number of failed units required to cause the sys- tem failure, i.e.	Each path set <i>j</i> consists of the intersection of the minimum number of operating units required to ensure system operation, i.e.				
$\sigma_{j} = \bigcap_{k=1}^{j} \overline{X}_{k}$	$\pi_j = \bigcap_{m=1}^{\prime} X_m$				
System failure:: union of cut sets σ_{ℓ}	System operation : union of paths <i>π</i>				
$\overline{oldsymbol{arphi}}=igcup_{j=1}^noldsymbol{\sigma}_j$	$\mathbf{y} = \bigcup_{j=1}^{s} \pi_{j}$				
Boolean algebra: De Morgan's Theoreme					
$\overline{\mathbf{y}} = 1 - \bigcap_{j=1}^{n} (1 - \sigma_j) = 1 - \left[(1 - \overline{\mathbf{x}}_1 \overline{\mathbf{x}}_3) (1 - \overline{\mathbf{x}}_2 \overline{\mathbf{x}}_3) \right]$	$\bar{y} = \bigcap_{j=1}^{s} (1 - \pi_j) = (1 - x_1 x_2)(1 - x_3)$				
multiply, Idempotent law					
$\overline{y} = 1 - \left[\left(1 - \overline{x}_1 \overline{x}_3 \right) \left(1 - \overline{x}_2 \overline{x}_3 \right) \right]$	$\overline{y} = 1 - x_1 x_2 - x_3 + x_1 x_2 x_3$				
$= 1 - \left(1 - \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_3 - \overline{\mathbf{X}}_2 \overline{\mathbf{X}}_3 + \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_3 \overline{\mathbf{X}}_2 \overline{\mathbf{X}}_3\right)$					
$= \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_3 + \overline{\mathbf{X}}_2 \overline{\mathbf{X}}_3 - \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_2 \overline{\mathbf{X}}_3$					
FS 2010 Laboratory for Safety Analysis 22					

