

EETH Ingenissische Technische Hoduschule Zurich Swiss Federal Institute af Technology Zurich	535
2. Inclusion of DF	
Probabilities of failure combinations • q_{AB} , q_{BC} , q_{AC} • q_{ABC} Assumption: equality of all units: • $q_{AB} = q_{BC} = q_{AC} = = Q_{k=2}$ • $q_{ABC} = Q_{k=3}$	
'2 out of 3-system'	
•Probability of a DF including two units: $3 \cdot Q_2$ •Combination of three (all) failures: $q_{ABC} = Q_3$.	
3. System failure probability	
System failure probability Q_s including DF: $Q_s = \Sigma Pr(independent failures) + \Sigma Pr(dependent failures)$	
'2 out of 3-system' $Q_s = 3 \cdot Q_1^2 + 3 \cdot Q_2 + Q_3.$	
22 March 2010	12

EXAMPLE 1 Togeneous the total to

$$\mathbf{Q}_t = \sum_{k=1}^n \binom{n-1}{k-1} \cdot \mathbf{Q}_k$$

with binominal coefficient

22 March 2010

$$\binom{n-1}{k-1} \equiv \frac{(n-1)!}{(n-k)! \cdot (k-1)!}$$

Number of failure combinations of an element with (k-1) different elements in a group of (n-1) identical elements.

Group of 3 redundant elements

$$\mathbf{Q}_{t} = \begin{pmatrix} \mathbf{3} - \mathbf{1} \\ \mathbf{1} - \mathbf{1} \end{pmatrix} \cdot \mathbf{Q}_{1} + \begin{pmatrix} \mathbf{3} - \mathbf{1} \\ \mathbf{2} - \mathbf{1} \end{pmatrix} \cdot \mathbf{Q}_{2} + \begin{pmatrix} \mathbf{3} - \mathbf{1} \\ \mathbf{3} - \mathbf{1} \end{pmatrix} \cdot \mathbf{Q}_{3} = \mathbf{Q}_{1} + 2 \cdot \mathbf{Q}_{2} + \mathbf{Q}_{3}$$

Laboratory for Safety Ar

Eingendesische Technoliche Hochschule Zarich Swiss Federal Institute of Fechnology Zurich	
From this it follows directly	
$\beta \cdot \mathbf{Q}_t = \mathbf{Q}_{k=n}$	
• With $Q_n = Q_t - Q_1$ follows	
$\mathbf{Q}_{k=1} = \mathbf{Q}_t \left(1 - \boldsymbol{\beta} \right)$	
• Finally	
$Q_{k} = \begin{cases} (1-\beta) \cdot Q_{t} & k=1 \\ 0 & m > k > 1 \\ \beta \cdot Q_{t} & k=n \end{cases}$	
'2 out of 3-system' System failure probability $Q_s = 3 \cdot \frac{Q_1^2}{Q_1^2} + 3 \cdot Q_2 + Q_3$	
Changes in the β -factor-model to $Q_s = 3 \cdot (1 - \beta)^2 \cdot Q_t^2 + \beta \cdot Q_t$	

β-Fac	tor-Model:
Advantages	Disadvantages
easy to apply	too conservative in the case of simultaneous failures of more than two units
Parameter can be determined relatively easily by operational experiences	Results are too conservative if there are more than two groups of redundancies (n>2)
	danger of too general application

	enter :				
Multiple-Greek-Letter-Model (MGL-Model)					
Assumptions identical to the β -factor-model, but combinations of failures are possible					
Parameter, Definitions Example: Group of 3 Redundant Elements					
Q_t : total failure $Q_t = Q_1 + 2Q_2 + Q_3$ probability of a unit					
$\alpha = 1$ $\alpha = 1$					
$\beta: \text{all dependent failure} \\ \text{probabilities relating to } Q_t \qquad \qquad \beta = \frac{2Q_2 + Q_3}{Q_t} = \frac{2Q_2 + Q_3}{Q_1 + 2Q_2 + Q_3}$					
γ . fraction of DF probability of a unit, with at least 2 units failing $\gamma = \frac{Q_3}{2Q_2 + Q_3}$					
22 March 2010 Laboratory for Safety Analysis	18				

Eidgenössische Technische Hochschule Zurich Swiss Federal Institute af Technology Zurich					
The results for a redundant group can be generalized by using the notation $\Phi_1 = 1, \Phi_2 = \beta, \Phi_3 = \gamma, \dots, \Phi_{m+1} = 0$					
	$\mathbf{Q}_{k} = \frac{1}{\binom{n-1}{k-1}} \cdot \left(\prod_{i=1}^{k} \Phi_{i}\right) \cdot \left(1 - \Phi_{i}\right)$	$\Phi_{k+1} \big) \cdot \mathbf{Q}_t$			
Example: Redundant Group with 3 Elements					
$Q_{k=1} = \frac{1}{\begin{pmatrix} 3-1 \\ 1-1 \end{pmatrix}} \cdot (\Phi_1) \cdot (1-\Phi_2) \cdot Q_t$ $= 1 \cdot (1-\beta) \cdot Q_t$	$Q_{k=2} = \frac{1}{\begin{pmatrix} 3-1\\ 2-1 \end{pmatrix}} \cdot (\Phi_1 \cdot \Phi_2) \cdot (1-\Phi_3) \cdot Q_t$ $= \frac{1}{2} \cdot 1 \cdot \beta \cdot (1-\gamma) \cdot Q_t$	$Q_{k=3} = \frac{1}{\begin{pmatrix} 3-1\\ 3-1 \end{pmatrix}} \cdot (\Phi_1 \cdot \Phi_2 \cdot \Phi_3) \cdot (1-\Phi_4) \cdot Q_t$ $= 1 \cdot \beta \cdot \gamma \cdot (1-0) \cdot Q_t$			
22 March 2010	Laboratory for Safety Analy	ysis 20			

v for Safety An

22 March 2010

