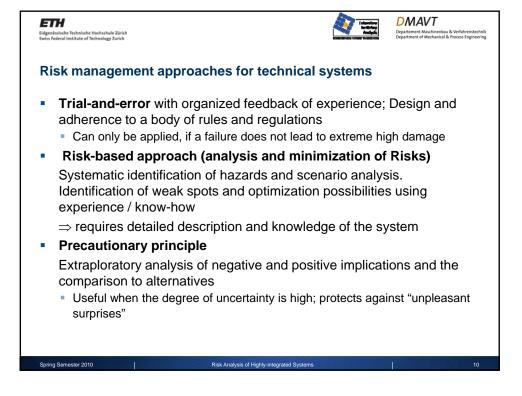
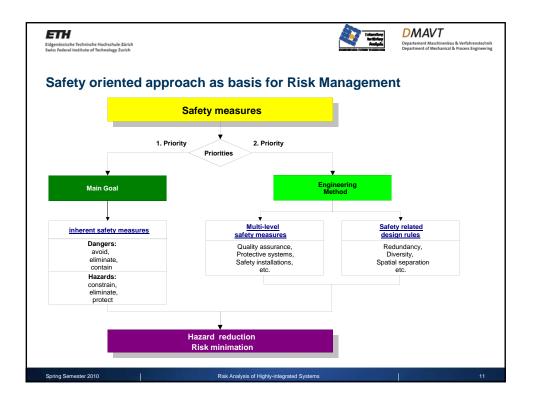
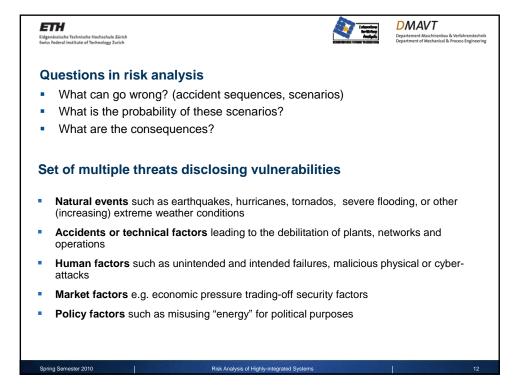
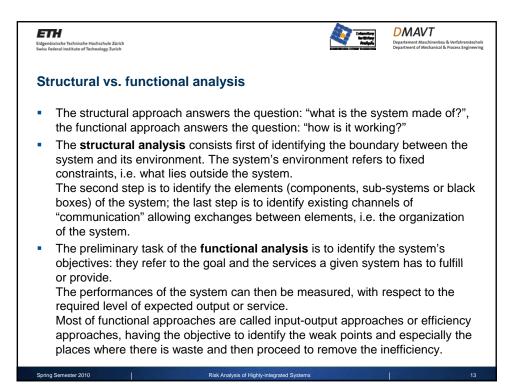
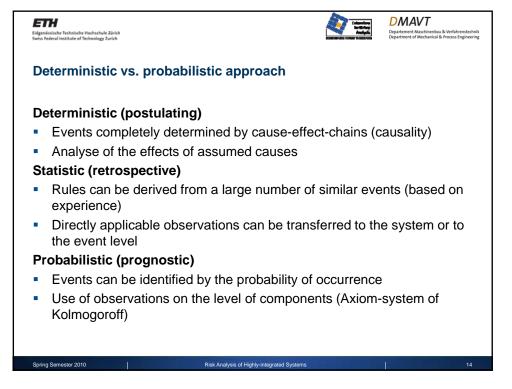

Impact of undesired event affec	ts following:
Inside installation	Outside installation
 Employees, Persons [number] Death: immediate, possible Injuries: light, heavy Health damage: temporary, permanent 	 The public [number] Death: immediate, possible Injuries: light, heavy Health damage: temporary, permanent Evacuations: temporary, permanent
 Installation [quantity of released substances, energy] Undesired dangerous state of installation (nuclear meltdown, "runaway" reaction) 	 Environment [quantity of released substances, energy, etc.] Released substances [quantity, toxicity, energy units] Concentration [mass and volume units] Contamination [area and mass units]
Cost/Investment [monetary units] microeconomic management 	Cost [monetary units] • macroeconomic
microeconomic	. , .

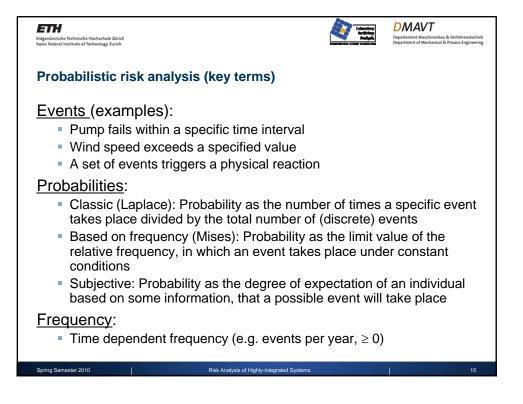


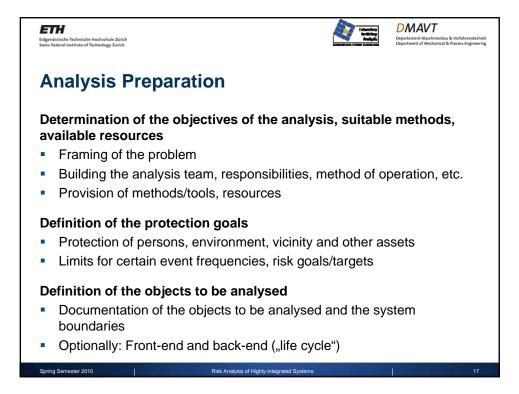


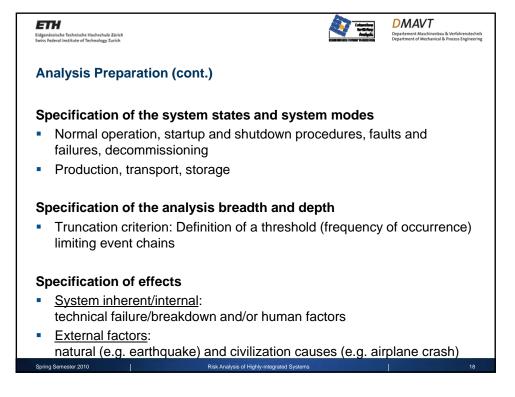


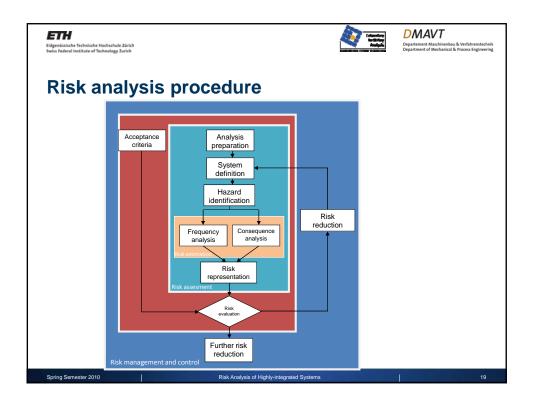


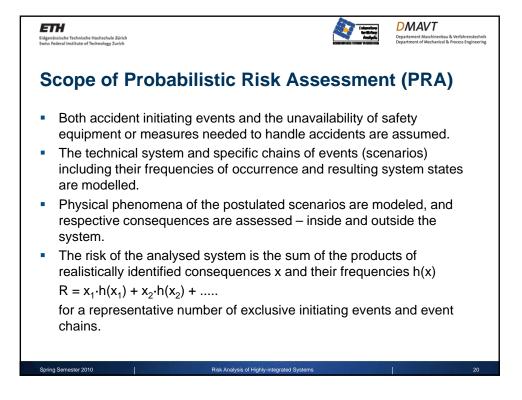


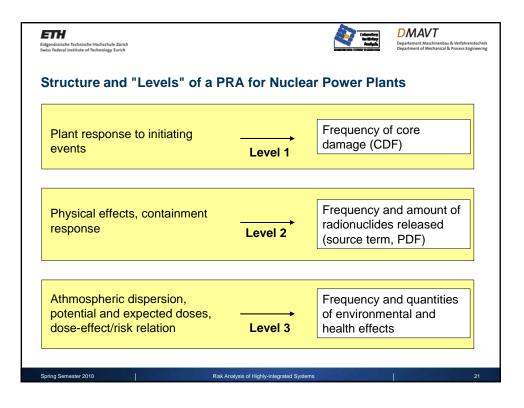


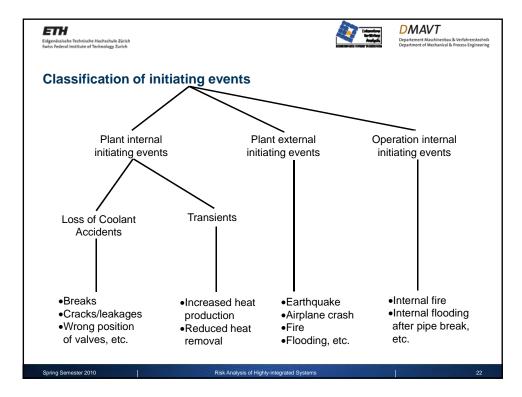


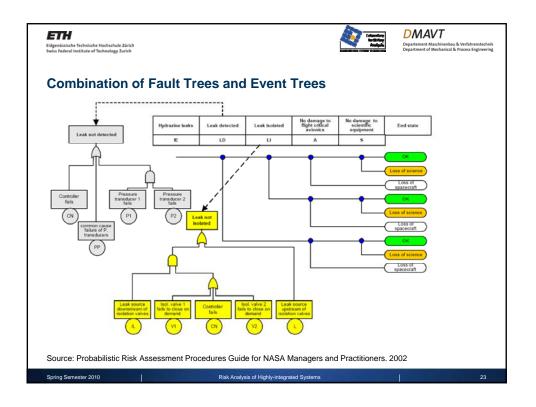


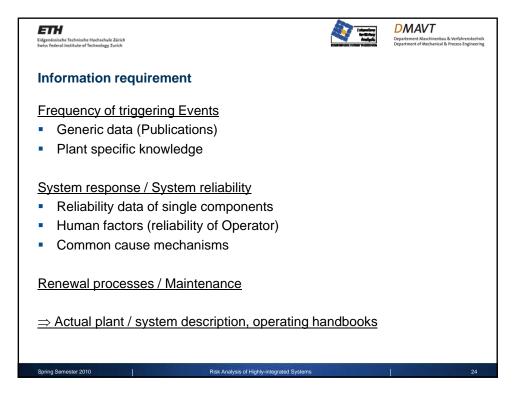


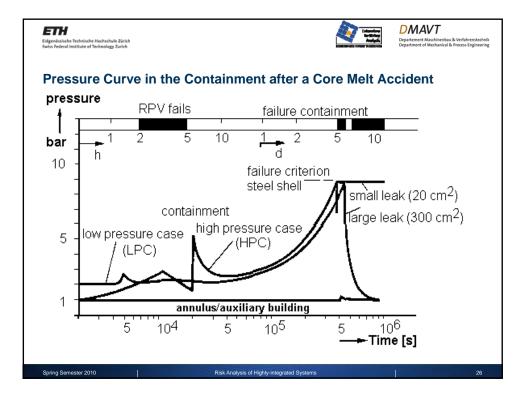


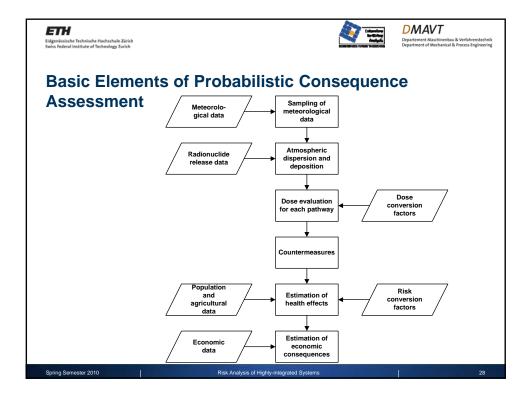

statistically	probabilistically
Risk = expected value ≥ 0	Risk = related probability
Example: throwing a c	coin ("heads" = "0" and "tails" = "1")
2	$Risk = Pr(X) = Pr(X E) \cdot Pr(E)$
$E(X) = \overline{\Sigma} x_{j} \cdot \hat{P}r(X = x_{j})$	Pr(E): Probability that a coin will be thrown
i=1	Pr(X): Probability that "1" occurs
E(X): Expected value	Pr(X E): Probability of "1" under the condition that a coin
X: Probability variable "heads"/"tails"	has been thrown
Pr(●): Relative frequency	$\Pr(X) = \Pr(X E) \cdot \Pr(E) = 0,5 \cdot 1 = 0,5$
Observation:	The probability of heaving "1" is 0.5
	Axiom system of Kolmogoroff:
$x_{i} = \begin{cases} 1 & \hat{P}r(X = x_{i}) = \frac{550}{1000} = 0,55 \\ 0 & \hat{P}r(X = x_{i}) = \frac{450}{1000} = 0,45 \end{cases}$	1. $0 \le \Pr(x) \le 1$
$x_i = \begin{cases} 1000 \\ 450 \\ 450 \end{cases}$	2. Pr(sure event) = 1
$\begin{bmatrix} 0 & FI(X-X_1) - \frac{1000}{1000} - 0,43 \end{bmatrix}$	
	^{3.} $\Pr\left(\bigcup_{i=1}^{n} x_{i}\right) = \Pr\left(\sum_{i=1}^{n} x_{i}\right)$
\Rightarrow E(X) = 0,55	(i=1) $(i=1)$

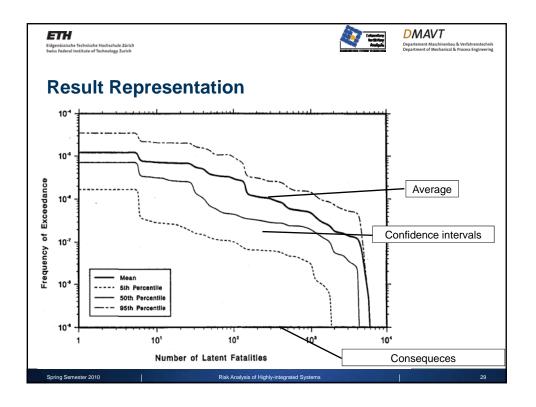


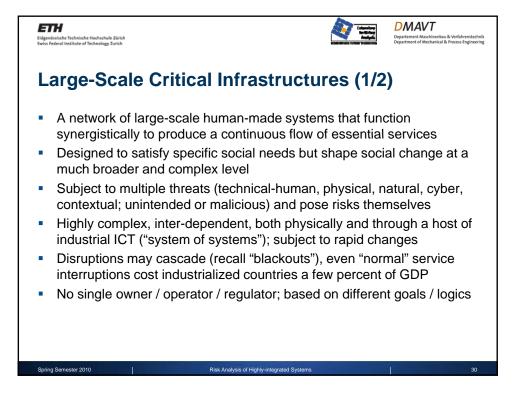


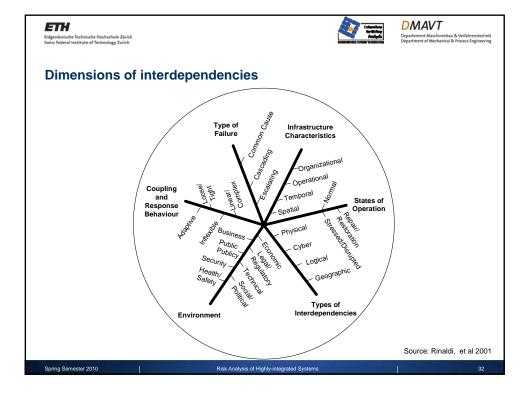









Eißgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich				DEPARTMENT BUT Department of Mechanical & Process Engineering		
GRS-Results Level 1	PRA, (German NPP GKN- System damage state		Power Core damage state		
Loss of main feed water		26%	, 	<5%		
Loss of main heat sink		20%		<5%		
Loss of preferred powe	Loss of preferred power			10%		
Very small primary leak	Very small primary leaks			53%		
SBLOCA via stuck-open S	SBLOCA via stuck-open SRV			15%		
Steam generator tube rupt	Steam generator tube rupture			7%		
Total expected frequency of sy Total expected frequency of	vstem dat of core da	mage state without AM: 8. amage state with AM: 2.5x	5x10 ⁻⁶ /yea 10 ⁻⁶ /year	ar		
	Expec	ted frequency of system damage state / year	Expe	cted frequency of core damage state / year		
Mean		8.5x10 ⁻⁶	2.5x10 ⁻⁶			
5% Fractile		1.6x10 ⁻⁶	4.4x10 ⁻⁷			
50% Fractile (median)		4.6x10 ⁻⁶	1.5x10 ⁻⁶			
95% Fractile		2.1x10⁻⁵	7.3x10 ⁻⁶			
"Point Value"*		5.0x10 ⁻⁶		1.7x10 ⁻⁶		
Spring Semester 2010		Risk Analysis of Highly-integrated Systems		25		


	Technische Hochsi stitute of Technol										/ T aschinenbau & V Aechanical & Pro			
Sour	ces													
ch re • Th	nemica lease ne sou	al proper plume/c	ties of e loud, rel depend	ach iso ease ra ds on th	he amour tope relea ate over ti le accider ms	ase me	d, thei and re	rmal eleas	ene	rgy i	n the			
											ed quantity			
Source term	Time before release [h]	Duration of release [h]	Release rate [MW]	Release height [m]	Time of alarm [h]			Rele	eased q	uantity				
Source	before release					Xe-	Org-I	Rele	Cs-		Ba-Sr,	La		
Source term	before release [h]	release [h]	rate [MW]	height [m]	[h]	Kr	- 5	1	Cs- Rb	Te-Sb	Ru			
Source	before release [h] 2.0	release [h]	rate [MW]	height [m]			Org-I 0.001	Rele	Cs-	Te-Sb 0.05	Ru 0	0		
Source term	before release [h] 2.0 3.0	release [h] 1.0 5.0	rate [MW]	height [m]	[h] 1.0	Kr 1.0 -	0.001	I 0.1 -	Cs- Rb 0.1	Te-Sb 0.05 0.05	Ru 0 0.01	0 0.001		
Source term	before release [h] 2.0	release [h]	rate [MW]	height [m]	[h]	Kr	- 5	1	Cs- Rb	Te-Sb 0.05	Ru 0	0 0.001 0.001		
Source term QT1 QT2	before release [h] 2.0 3.0 2.0	release [h] 1.0 5.0 1.0	rate [MW] 2.0 0.2 0	height [m] 10 10 10	[h] 1.0 - 1.0	Kr 1.0 - 1.0	0.001 - 0.001 0.00001 0.00033 0.00033	I 0.1 - 0.1	Cs- Rb 0.1 - 0.1	Te-Sb 0.05 0.1 0.001	Ru 0 0.01 0.001 0.0001 0.0033 0.0033	0 0.001 0.000 1 0.0003 3 0.0003 3 3		
Source term QT1 QT2 QT3	before release [h] 2.0 3.0 2.0 2.0 2.0 3.0	release [h] 1.0 5.0 1.0 1.0 1.0 1.0 1.0	rate [MW] 2.0 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	height [m] 10 10 10 10 10 10 10 10 10	[h] 1.0 - 1.0 1.0	Kr 1.0 - 1.0 0.1	0.001 - 0.001 0.00001 0.00033 0.00033	I 0.1 - 0.001 0.033 0.033	Cs- Rb 0.1 - 0.001 0.033 0.033	Te-Sb 0.05 0.1 0.001 0.033 0.033	Ru 0 0.01 0.001 0.0001 0.0033 0.0033	0 0.001 0.000 1 0.0003 3 0.0003		

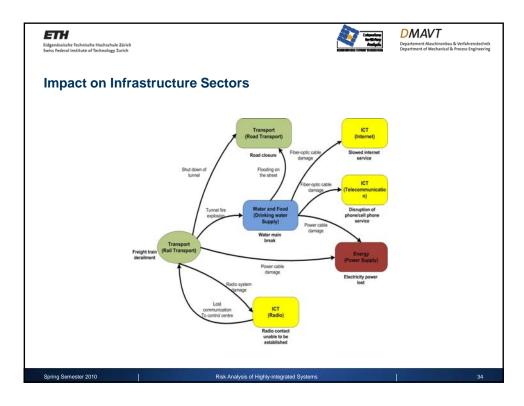
ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

er 2010

ng Seme

DMAVT Departement Maschin Department of Mechai

Baltimore Howard Street Tunnel



In addition to its expected effects, this disaster caused a cascading degradation of infrastructure components not previously anticipated. For example, the tunnel fire caused a water main to break above the tunnel, shooting geysers 20ft into the air. The break caused localized flooding which exceeded a depth of three feet in some areas.

The interrelationship among infrastructures and its potential for cascading effects were evident on July 19, 2001, when a 62-car freight train carrying hazardous chemicals derailed in Baltimore's Howard Street Tunnel.

33

