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Risk Analysis of Highly-integrated Systems

Additional information on modeling and simulation tools

(Monte Carlo methods, finite state modeling/state models, 
Markov chains, Petri nets) 

Definition: The use of randomly generated data and computer simulations to obtain 
approximate solutions to complex mathematical and statistical problems.

Monte Carlo Simulation

Step 1: Create a parametric model, y = f(x1, x2, ..., xq).

Step 2: Generate a set of random inputs, xi1, xi2, ..., xiq.

Step 3: Evaluate the model and store the results as yi.

Step 4: Repeat steps 2 and 3 for i = 1 to n.

Step 5: Analyze the results using histograms, 
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summary statistics, confidence intervals, etc.

Monte Carlo is about invoking laws of large numbers to approximate expectations
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pi is a probability of a state i.

A model consisting of a set of states S, a start state, possible transitions and a 
transition function that maps states to a next state. It changes to new states 
d di th t iti f ti

Finite state machines

depending on the transition function.
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Example: 4 States
2 Components in Parallel

State 1:  Both components working 
(start state)

State 2: Component 1 failed
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State 2: Component 1 failed
State 3: Component 2 failed
State 4: Component 1 and 2 failed

Final state (no transitions out)
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A Markov chain consists of a state space S={1,...,n} and a transition Matrix T that 
defines the probabilities of each transition.

Markov Chains
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       0,7

Markov chains are directed graphs that have a weight (numeric value) 
associated with each edge

Application of the State Modell: 

Unrepairable System

Z1

(1,1)
Z2

(0,0)

λ

Zi(Ki,S), where Ki state of component, S- conditional state of system.

Λ - failure rate 
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Homogenous system of equalities:     
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To be solved unter conditions: p1(t)+p2(t)=1 and p1(0)=1

Solution (via Laplace transformation): tt etpandetp    1)()( 21
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Application of the State Modell:

Repairable System

Zi(Ki,S), where Ki state of component, S- conditional state of system.

Λ - failure rate, μ – repair rate

Z1

(1,1)
Z2

(0,0)

λ

μ
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μ p

Homogenous system of equalities:     















)(),()(),( 2121 tptptptp 

To be solved unter conditions: p1(t)+p2(t)=1 and p1(0)=1

Solution: 
tetp 
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 It is the time dependent 

Availability V(t)!
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Application of the State Modell:

Example System

K1

K3

K2

E A
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Number of states 23=8

Z1 Z5Z

Z2

(0,1,1,0)

λ2

λ1

Application of the State Modell:

Example System

λ11

(1,1,1,1)
Z5

(0,0,1,0)
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Z7

(0,1,0,0)

Stationary availability is calculated by V=p1+p3+p4
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Application of the State Modell:

Repairable System

Z1: λ*p1=μ*p2

Z1

(1,1)
Z2

(0,0)

λ

μ

Z2: λ*p1=μ*p2

p1+p2=1
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p1 p2

Stationary availability (steady-state availability)

V is calculated by

The Petri net is a directed graph with nodes representing either "places" 
(represented by circles) or "transitions" (represented by rectangles). When all the 
places with arcs to a transition (its input places) have a token, the transition 
"fires" removing a token from each input place and adding a token to each place

Petri Nets

fires , removing a token from each input place and adding a token to each place 
pointed to by the transition (its output places).

Places (Storage) 

Transitions (Actions)
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Edges
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Petri Nets Modelling
A B A B A B

concurrency synchronisation communication

A B A B A B

13May, 2010 Laboratory for Safety Analysis

conflict/choice multiplicity/resources individuality/data

Examples of technical Networks 

Swiss Power System Natural Gas Pipelines
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• Internet

• World Wide Web

• Railway

• Motorway

• …
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Formal definition: 

Tuple (V E) with V a set of n vertices and a set of m edges E: G = (V,E)

Definition: Graph

Tuple (V,E) with V a set of n vertices and a set of m edges E: G  (V,E)
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Node Set V (G)
Edge set E={(a,b)}

•Directed graphs
•Weighted graphs

Types of Graphs

16May, 2010 Laboratory for Safety Analysis

Weighted GraphDirected graphs
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The degree of a vertex v in graph G is

Definitions: Degree and connectedness

The degree of a vertex v in graph G is

dG(v) = |NG(v)|.

G is connected, if there is a path u 

between two vertices.
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Otherwise G is disconnected.

Types of Networks

Random network Scale-free network

Poisson distribution of the number k Exponential distribution of thePoisson distribution of the number k 
of edges between nodes

Exponential distribution of the 
number of edges k between nodes
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Figures: Bornholdt, Schuster: Handbook of Graphs and Networks

Examples: Internet, Power System
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Vulnerability Assessment of Networks
Real Networks

Most of the technical networks are scale-free.

Reasons:

•less expensive, fewer edges necessary 
(end user needs only one connection)

•efficient

•natural growth

e.g. Power System, Internet
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natural growth

Vulnerability of Network Types

type of impact exponential network scale-free network

random robust extremely robust

malicious attack robust extremely vulnerable

scale-free network:
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Hub

the chance to destroy the hub with a 
random attack is 1:7

a malicious attack to the hub destroys the 
connection to six nodes
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Vulnerability Assessment of Networks 
Network Parameters

Measures to characterize and analyze the vulnerability of a network with N vertices 
and M edgesg

Size of the graph: number of edges in the graph

Degree of distribution ki: number of edges connecting vertex i; the average 
degree is given by k=2M/N

Clustering coefficient: ratio of existing and maximum possible number of edges 
between the neighboring vertices ki of a vertex i; neighboring vertices are the 
vertices actually connected to node i
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Average path length: average of all shortest paths in the network

Shortest path: shortest path between two vertices

Most stressed edge: most utilized edge in all shortest paths

Vulnerability Assessment of Networks – Shortest Path
Dijkstra-Algorithm – one method to calculate the shortest path between two nodes:

IEEE-Test-System

Shortest Path between node 107 and 310
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Vulnerability Assessment of Networks – Most stressed 
edges and nodes

Most stressed node Most stressed line

Network theoryNetwork theory
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Vulnerability Assessment of Networks – Removal of nodes

Network theory - Increase of the average path 
length after the removal of nodes

ABM – calculations

max loss of power

Removal of Node 223
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Removal of

Nodes 220, 223, 318
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Vulnerability Assessment of Networks – Highway Network

Most stressed nodes

Network System
Shortest path between

Munich and Hamburg
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Most stressed nodes

Vulnerability Assessment of Networks – Highway Network

Most stressed nodes

Network System
Shortest path between

Munich and Hamburg
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Vulnerability Assessment of Networks – Highway Network

Most stressed nodes

Network System
Shortest path between

Munich and Hamburg
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Vulnerability Assessment of Networks – Highway Network

Most stressed nodes

Network System Shortest path between

Munich and Hamburg
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