Cascading Disaster Spreading and Optimal, Network-Dependent Response Strategies

Prof. Dr. rer. nat. Dirk Helbing

Chair of Sociology, in particular of Modeling and Simulation

www.soms.ethz.ch

with Lubos Buzna, Limor Issacharoff, Ingve Simonsen,

Christian Kühnert, Hendrik Ammoser, Karsten Peters

Disaster Spreading in Networks

enössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

Failure of Critical Infrastructures

Blackout in parts of the USA and Canada (2003), an impressing example of the long-reaching accompainments of supply network failures.

Interaction Networks Behind Disaster Spreading

No RELEASED IN COL

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

WIRTH STREET

24

Common Elements of Disasters

Causality Network for Thunderstorms

00000

NINI BURNER

Disasters Cause Disasters

D. Helbing, H. Ammoser, and C. Kühnert: Disasters as extreme events and the importance of network interactions for disaster response management. Pages 319-348. in: S. Albeverio, V. Jentsch, and H. Kantz (eds.) *The Unimaginable and Unpredictable: Extreme Events in Nature and Society* (Springer, Berlin, 2005).

Causality Network of the Elbe Flooding 2002 (Detail)

Quantitative Analysis of Causality Networks

ub stanta u tem en

Identify the elements of the matrix M. Consider quantitative (data) and qualitative interactions {-3, ..., +3} and thus functional and structural characteristics of the causal networks for different means of disaster!

Modeling and Simulation of Disaster Spreading

Simulation of topology dependent spreading:

- What are the influences of different network topologies and system parameters?
- Optimal recovery strategies?

Buzna L., Peters K., Helbing D., Modelling the Dynamics of Disaster Spreading in Networks, Physica A, 2006

Spreading of disasters:

Causal dependencies (directed) Initial event (internal, external) Redistribution of loads Delays in propagation Capacities of nodes (robustness) Cascade of failures Scope of research:

Spreading conditions (network topologies, system parameters) Optimal recovery strategies

Mathematical Model of Disaster Spreading

Node dynamics:

$$\frac{dx_i}{dt} = -\frac{x_i}{\tau} + \Theta\left(\sum_{j\neq i} \frac{M_{ij}x_j(t-t_{ij})}{f(O_i)} e^{-\beta t_{ij}/\tau}\right) + \xi_i(t)$$

- state of the node x_i
- $x_i = 0$ usual situation $x_i > \theta_i$ node is destroyed

$$\Theta(x) = \frac{1 - \exp(-\alpha x)}{1 + \exp[-\alpha (x - \theta_i)]}$$
$$f(O_i) = \frac{aO_i}{1 + bO_i}$$

- θ_i node threshold $1/\tau$ healing rate

- t_{ij} time delay $\xi_i(t)$ internal noise
- M_{ij} link strength O_i node out-degree
- a, b, α , β fit parameters

Threshold function:

$$(x) = \frac{1 \exp(-\alpha x)}{1 + \exp[-\alpha (x - \theta_i)]}$$

Node degree:

$$f(O_i) = \frac{aO_i}{1 + bO_i}$$

We use a directed network, dynamical, bistable node models and delayed interactions along links.

Failures Triggered by Internal Fluctuations

Coinciding, distributed, random failures:

$$\frac{dx_i}{dt} = -\frac{x_i}{\tau} + \Theta\left(\sum_{j\neq i} \frac{M_{ij}x_j(t-t_{ij})}{f(O_i)} e^{-\beta t_{ij}/\tau}\right) + \xi_i(t)$$

L. Buzna, K. Peters, D. Helbing: Modeling the dynamics of disaster spreading in networks, *Physica A* **363**, 132-140 (2006)

Damage compared to an "unconnected network":

Connectivity is an important factor (in a certain region).

Phase Transition in Disaster Spreading

No of the life of

Node robustness vs. failure propagation:

nössische Technische Hochschule Zürich

deral Institute of Technology Zurich

We found a critical threshold for the spreading of disasters in networks. Topology and parameters are crucial.

Topology and Spreading Dynamics

and the state of the

Homogeneous network

SF

б

SF

б

5

Example: 100 nodes, average state after t=300

K. Peters, L. Buzna, D. Helbing: Modelling of cascading effects and efficient response to disaster spreading in complex networks, International Journal of Critical Infrastructures, in print (2007).

Modelling the Recovery of Networks

1. Mobilization of external resources:

 $r(t) = a_1 t^{b_1} e^{-c_1 t}$

- 2. Formulation of recovery strategies as a function of
- the network topology
- the level of damage

$$\frac{1}{\tau_i(t)} = \frac{1}{(\tau_{start} - \beta_2)e^{-\alpha_2 R_i(t)} + \beta_2}$$

3. Application of resources in nodes

Parameters:

 t_D time delay in response

 $R\,$ disposition of resources

- $R_i(t)$ cumulative number of resources deployed at node i
- au_{start} initial intensity of recovery process
- $\alpha_2 \ \beta_2$ fit parameters

Mobilization of Resources

Mobilization of resources (time dependent)

jössische Technische Hochschule Zürich

eral Institute of Technology Zurich

External resources become available after a certain response time delay T_D

During mobilization the number of resources increases

Later a phase of demobilization occurs

Number of available resources *r*(*t*):

$$\boldsymbol{R}\left(t\right) = a_1 t^{b_1} e^{-c_1 t}$$

 a_1, b_1, c_1 are fit parameters

Recovery Strategies

Application of external resources in nodes:

$$\tau(t) = (\tau_{start} - \beta) exp^{-\alpha \mathbf{R}_i(t)}$$

- $R_i(t)$ cumulative number of resources deployed at node *i*
- au_{start} time to start healing
- lpha β fit parameters

Formulation of recovery strategies

as a function of the

- network topology
- level of damage

S_o – no recovery

 S_1 – uniform deployment

Application of resources in a scale-free network

- S_2 priority1: destroyed nodes
 - priority2: damaged nodes
- S₃ out-degree based deployment

Formulation of recovery strategies, based on information :

S_o no recovery

nössische Technische Hochschule Zürich Federal Institute of Technology Zurich

Topology information only:

- $\mathbf{S}_{\mathbf{1}}$ uniform deployment
- S₂ out degree based dissemination

Damage information:

- S₃ uniform reinforcement of challenged nodes (x_i>0)
- S₄ uniform reinforcement of destroyed nodes (x_i>) θ_i

Damage & topology information:

S₅ targeted reinforcement of highly connected nodes

1st priority: fraction q to hub nodes

 2^{nd} priority: fraction 1-q according to S_4

S₆ out-degree based targeted reinforcment of destroyed nodes

Application of resources to a scale-free network

Recovery of Networks

Parameters:Network topologytime delay in response $t_D = 8$ disposition of resourcesR = 1000

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

L. Buzna, K. Peters, H. Ammoser, Ch. Kuehnert and D. Helbing: Efficient response to cascading disaster spreading, *Physical Review E* **75**, 056107 (2007)

Behaviour of a Node for Sufficient and Insufficient Resources

K. Peters, L. Buzna, and D. Helbing (2007) Modelling of cascading effects and efficient response to disaster spreading in complex networks (in print)

Minimum Quantity of Resources R_{min} for Recovery

Given: Amount of resources, mobilized with certain delay.

Recovery (in reasonable time) is not always possible.

Recovery of Networks: When Does Strategy Matter?

The delay of recovery activities is crucial.

Optimization of recovery strategies is promising in certain parameter regions.

Comparison of Efficient and Inefficient Strategies

Relative difference in damage between $\rm S_6$ and $\rm S_1$

$D_{6,1} = (\langle D_6 \rangle / \langle D_1 \rangle) 100\%$

 $\rm S_{1}$ - uniform dissemination (the worst strategy) $\rm R$

ssische Technische Hochschule Zürich

ral Institute of Technology Zurich

S₆ – out – degree based targeted reinforcement of destroyed nodes (the best strategy)

- 1. The promptness of recovery activities has a crucial influence on their efficiency
- 2. Optimization of protection strategies is possible in certain parameter regions

There is no unique optimal response strategy:

jössische Technische Hochschule Züric

ral Institute of Technology Zurich

- 1. Strategies based on the network structure has been proved as a most suitable for scale-free structures.
- 2. Strategies based on the damage information are more appropriate for regular networks.
- 3. The situation in Erdős-Rényi and small-world networks depends on t_D (short $t_D =>$ damage based strategies)

(large $t_D \Rightarrow$ network structure based strategies)

Mixed Recovery Strategies

Objectives:

- Minimal average damage
- Minimal sufficient quantity of resources

Parameters:

- R overall disposition of resources
- **t**_D time delay of recovery
- Network topology

Methods:

- Mixing of basic strategies
- Switching between strategies in time

Application of resources (R = 2000) on scale-free network

Network-Dependence of Best Strategy

Strategies based on the network structure have been proven most suitable for scale-free structures.

Strategies based on information about the degree of damage are more appropriate for regular networks.

The situation in Erdös-Rényi and small-world networks depends on the response time t_D

```
(short t_D \Rightarrow orient at damage)
```

(large $t_D \Rightarrow$ orient at network structure)

Critical Infrastructures and Their Vulnerability

össische Technische Hochschule Zürich

eral Institute of Technology Zurich

- "Critical Infrastructures consist of those physical and information technology facilities, network services and assets which, if disrupted or destroyed, would have a serious impact on the health, safety, security or economic well-being of citizens or the effective functioning of governments".
 (Commission of the European Communities in 2004)
- A system is said to be vulnerable if its functioning can be significantly reduced by intentional or non-intentional means.

Level of Vulnerability System's functioning

$$L = \frac{df}{du}$$
System's failure

UP REAL PROPERTY OF

Generation of Traffic in the Computer

In the case of freeways (no choice of different travel modes/ means of transport), the classical 4-step model reduces to the following 3 steps:

- 1. Trip generation (overall traffic volume generated per hour)
- 2. Trip distribution (OD choice with multinomial logit model, exponentially distributed as function of travel time)
- 3. Traffic assignment (based on travel time, distribution over alternative routes according to the Wardrop principle)

Travel time on link *l* is modeled by the classical capacity constraint function

$$T_{l}(q_{l}) = T_{l}^{0}[a(1 + (\frac{q_{l}}{k_{l}})^{b}]$$

Topological Analysis

Efficiency

$$E[G] = \frac{1}{N(N-1)} \sum_{i,j \in G} \frac{1}{d_{ij}}$$

dij – shortest path between nodes i and j

Edge Information Centrality E(G) and E(G') is the efficiency before and after the links' removal, respectively

$$IC_{ij} = \frac{\Delta E}{E} = \frac{E[G] - E[G']}{E[G]}$$

*n*_{ij} number of shortest pathes between city nodes which pass through the edge connecting nodes i and j

$$b_{ij} = \frac{n_{ij}}{(N-1)(N-2)}$$

Case Study: The Italian German, and French Highways

NIN HINGING

Topological Analysis

NINI BURNER

31

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

Functional Vulnerability of a Freeway System

Topological efficiency

Flow related analysis

$$E[G] = \frac{1}{N(N-1)} \sum_{i,j \in G} \frac{1}{d_{ij}}$$

dij – shortest path between nodes *i* and *j*

$$L_T^{(u)} = \frac{\Delta E}{E} = \frac{E[G(0)] - E[G(u)]}{E[G(0)]}$$

Efficiency

$$E_F = \frac{1}{N(N-1)} \sum_{ij \in OD} \frac{1}{C_{ij}}$$

UN RELEVANCE

Cost Function

$$C_{ij} = q_{ij}T_{ij}$$

Quality of service

$$QoS = \frac{E_F}{E_{F_{max}}} = \frac{\sum_{ij} C_{ij}^{-1}}{\sum_{ij} (C_{ij}^{\min})^{-1}}$$

$$L_F^{(u)} = 1 - \left\langle \frac{\mathrm{QoS}^{(u)}}{\mathrm{QoS}(0)} \right\rangle$$

Topological Vulnerability and Flow-Related Vulnerability

NORTHING OF

 λ is the number of links simultaneously removed from the network

© ETH Zürich | Dirk Helbing | Chair of Sociology, in particular of Modeling and Simulation | www.soms.ethz.ch

λ

Blackouts and Cascading Effects in Electricity Networks

New York, August 14, 2003

Rome, September 28, 2003

Blackouts and Cascading Effects in Electricity Networks

State of the power grid shortly before the incident

Sequence of events on November 4, 2006

W WAT - IN AN

Nr.	Zeit	kV	Leitung			125	KAT.	Y A	200
1	22:10:13	380	Wehrendorf-				1 2	KTX	1.51
			Landesbergen		N. (95	2.45		LIGIN	- Wit
2	22:10:15	220	Bielefeld/Ost-	5	17/7		1231	the water I	-
			Spexard	2 1-1	H S			R	5
3	22:10:19	380	Bechterdissen-	L DS	10	DEUT	TSCHLAND	mb	The second
			Elsen	12		1 million	1. 110	An	1
4	22:10:22	220	Paderborn/Süd-		MAY	- toy	AR I	~0	and ?
		Bech	terdissen/Gütersloh	~ 50	and a	and	N MA	-	LOTT
5	22:10:22	380	Dipperz-	- Alan	1 12	RUT-	1 15	5	3 AL
			Großkrotzenburg 1	1878	XFR	1 aly	1-15	1500	-21
6	22:10:25	380	Großkrotzenburg-	200	AST (AX		S Y	No
			Dipperz 2	TRY 6	1 Con		122	- Der	Vm.
7	22:10:27	380	Oberhaid-	KOLA	A. M	1	A A	and the	22
			Grafenrheinfeld	122	1 Jam	+ - 1	n. Et	15Am	T.S.T.
8	22:10:27	380	Redwitz-	F-2	Jory	19212	1 2 (10)	1 miles	
			Raitersaich	Vint	1 AN	1 ~6	ARE I	SV P	
9	22:10:27	380	Redwitz-	Muxt	to have	2 al	2 101	2 13	NOT
			Oberhaid	JS-171		2 (Dont)	V AQ	190	X
10	22:10:27	380	Redwitz-	3-50	1	A M	V.	K12	++
			Etzenricht	- Lat		ANG-C	IVI :	h. an	They
11	22:10:27	220	Würgau-	LITY	my	IVS I	A.V.	1200	you Lot
			Redwitz	5X	the	A N		2.7	No.
12	22:10:27	380	Etzenricht-	1		1.A	1 A	X	74
			Schwandorf	1		Res	1 PP	- 74	6 / - ug
13	22:10:27	220	Mechlenreuth-	()=	Ath 1	PAT	5JAA	1	- A
			Schwandorf	1 -	All Ma			:10 3	00/2
14	22:10:27	380	Schwandorf-	- The	- Alexander	many	Ka b	eng?	k
			Pleinting	· KG	X FLO	SL.P	h IN Es		Pa
				211/1	1 3 × 1	NIM NEW	Ser Parts and	19	2

1,3,4,5 – lines switched off for construction work

- 2 line switched off for the transfer of a ship by Meyer -Werft
- E.ON Netz's report on the system incident of November 4, 2006, E.ON Netz GmbH

Blackouts and Cascading Effects in Electricity Networks

NI RITTING

Failure in the continental European electricity grid on November 4, 2006

EU project IRRIIS: E. Liuf (2007) Critical Infrastructure protection, R&D view

Dynamic Model of Cascading Failures

Network:

 ${\cal N}\,$ set of nodes

- ${\cal L}$ set of links
- \boldsymbol{W} adjacency matrix ($W_{ij} \geq 0$, link weight)

Model dynamics:

$$n_i(t+1) = \sum_{j=1}^{N} T_{ij} n_j(t) + n_i^{\pm}$$
 (Master equation)

 $n_i(t)$ number of particles hosted by node *i* at the time *t* $T_{ij} = W_{ij}/w_j, w_j = \sum_{\ell=1}^{\mathcal{N}} W_{\ell j}$

$$n_i^\pm \, > \, 0 \,$$
 node is source, $n_i^\pm \, < \, 0$ node is sink

I. Simonsen, L. Buzna, K. Peters, S. Bornholdt, D. Helbing, Stationary network load models underestimate vulnerability to cascading failures, 2007, submitted, eprint : http://arxiv.org/pdf/0704.1952

Stationary and Dynamic Models of Cascading Failures

Model normalization:

 $\rho_i(t) = n_i(t)/N$ nodal particle density $c_i(t) = \rho_i(t)/w_i$ utilization of outflow capacity $j_i^{\pm} = n_i^{\pm}/(Nw_i)$ sinks and sources term Dynamic model: \longrightarrow $c(t+1) = \mathcal{T}c(t) + j^{\pm}$ $c_i^{(0)}(\infty) = 1/(Nw_i)$ stationary solution for $j^{\pm} = 0$, otherwise Stationary model: $\longrightarrow |c(\infty) = c^{(0)}(\infty) + (1 - T)^+ j^{\pm}|$ $\left(\mathbf{1} - oldsymbol{\mathcal{T}}
ight)^+$ generalized inverse of matrix $\mathbf{1} - oldsymbol{\mathcal{T}}$ Link flow: $C_{ij}(t) = W_{ij}c_j(t)$ current on link from *i* to *j* $L_{ij}(t) = C_{ij}(t) + C_{ji}(t)$

Stationary and Dynamic Models for Cascading Failures

WIRTHING ON

Model Dynamics

No RUBINO

R. Sadikovic: Power flow control with UPFC, (internal report)

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

Model Dynamics

Power grid simulation model

71

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

Our model

NI REAL PROPERTY OF

R. Sadikovic: Use of FACTS devices for power flow control and damping of oscillations in power systems, 2006, PhD thesis, ETH Zurich

Model Dynamics

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

UK high voltage power grid topology (300-400 kV)

NAMES IN COLUMN

Stationary Model vs. Dynamic Model

WIRTHING MI

0.6

0.7

0.6

Link capacities: $\mathcal{C}_{ij} = (1+\alpha) L_{ij},$ 0.8 🔶 Static ▲ Dynamic $\underbrace{\mathfrak{S}}_{\mathfrak{O}}^{0.6}$ number of nodes 0.8 $\overbrace{Q}^{\mathfrak{B}} \underbrace{0.6}_{0.4}$ $|\mathcal{L}|$ number of links 0.4 $|\mathcal{N}_R|$ number of remaining 0.2 nodes 0.2 0 $|\mathcal{L}_R|$ 0.2 0.4 number of remaining α links 0.3 0.5 0.2 0.1 0.4α

$$G_{\mathcal{L}}(\alpha) = \frac{|\mathcal{L}_R|}{|\mathcal{L}|} \approx G_{\mathcal{N}}(\alpha) = \frac{|\mathcal{N}_R|}{|\mathcal{N}|} = G(\alpha)$$

Conclusions

- We have developed models to represent causal interrelationships triggering cascading disaster spreading, allowing to compare the effectiveness of alternative response strategies
- A time-dependent model of disaster spreading allowed us to describe the impact of the topology of interrelationship networks on the spreading dynamics
- The efficiency of different disaster response/relief strategies could be tested by the same model. Different networks require different response strategies! A quick response is crucial.
- Another model has been used to evaluate the vulnerability of freeway networks in different European countries
- A model of cascading failures in power grids showed that stationary spreading models underestimate the robustness of electrical power supply networks by 80% and more.