

# Safety of Nuclear Power Plant : Dependent Failures

Prof. Wolfgang Kröger

(http://www.riskcenter.ethz.ch, kroeger@ethz.ch)



# **Present model assumptions**

- All failures of a system are due to independent failures at components ("elements") level
- The failure of an element has no functional influence on other system elements
- The physical effects of an element failure on other elements are marginal
- By adding (redundant) elements the systems failure probability can be reduced to a minimum

## These assumptions contradict common experience!

## **German Nuclear Power Plants**

- Failure of starting all four emergency diesels while testing leads to the identification of a dependent failure; the batteries for starting the diesels have been insufficiently maintained (Würgassen).
- A polluted screen in the river water inlet (single failure) lead to a lack of cooling water for the main and auxiliary cooling water pumps (dependent failures of the redundant cooling water supply (Lingen).
- A lighting strike (external event as common cause) lead via the bearing oil supply to the shut down of two main cooling water pumps (Stade).

# Definitions

#### Dependent failure (DF)

Event, of which the occurrence probability cannot be modelled as a product of single occurrence probabilities (mathematical), or

Event, which is caused by any interdependent structures (multiple failure, technical)

- CCF (common cause failure) Description of a type of a dependent failure, at which a common single cause triggers several failures occurring (almost) simultaneously
- CMF (common mode failure) Description for a specific CCF, in which several (system-)units fail in the same way
- CF (causal or cascade failures)
   Description for spreading or interdependent failures
- Common cause initiating events
   Description for initiating events which can cause several events or event scenarios, e.g.
   area event such as earthquakes or flooding
- DF are of paramount important in redundant (parallel) systems.

## Fukushima Dai-ichi : Tsunami Damages



Sources: Janti, Digital Globe, 2011

# **Causes of DF**



# **Transition to the Modeling of DF**

## Without consideration of existing DF

- uncompleted description of technical systems;
- to optimistic results of safety analysis

## **Problems:**

- Lack of data for highly reliable systems, usually from limited operational experiences (normal operation state, functional testing)
- It is difficult to classify observed events into dependent and independent ones.

## **Required steps to consider DF**

- 1. Identification of DF in a technical system
- 2. Qualitative and quantitative consideration of DF within a reasoned framework (model building)
- 3. Identification of options to prevent/reduce the consequences of DF

## Modeling approaches to consider DF

## **Explicit Methods**

Event specific models

Consideration special consequences from e.g. earthquakes, fire, floods, broken pipes or leakage in the primary loop.

- Event tree and fault tree analysis
   Consideration of functional interdependencies (units).
- Models for the quantification of human actions
   Consideration of interdependencies between single human actions.
- Examples are interconnecting models in THERP (Technique for Human Rate Error Prediction).

Explicit methods comprise structural and functional interdependencies, they are system-specific but don't cover safety of systems completely.

## Implicite Method (to consider residuals)

Marshall-Olkin-Model, *b*-Faktor-Model, MGL-Model (Multiple Greek Letter), BFR-Model (Binominal Failure Rate) et al.

## General

- In principle, implicit methods can completely cover dependent failures, but great uncertainties arise because the data is based solely on the level of considerate items (CMF).
- Rigorous application bears the danger of insufficient fault tree analyses, e.g. failure of notice or correctly value structural/functional dependencies.

## **Representation of DF in a fault tree**



## Modeling (implicit method)

### Marshall-Olkin-Model (fundamental modeling)

I. System modeling excluding DF

Example: '2 out of 3-system' with units A, B and C

- System failure, when two units fail: {A, B}, {A, C}, {B, C}
- Probability of system failure:  $Q_s = q_a \cdot q_b + q_a \cdot q_c + q_b \cdot q_c 2 q_a \cdot q_b q_c$

## **Simplification and notation**

- All units failure probabilities are identical: q<sub>a</sub> = q<sub>b</sub> = q<sub>c</sub> = Q<sub>k=1</sub>
   k (k = 1, 2, ..., n): Number of involved units in the failure
- Simplification:  $Pr(a \cup b) \approx Pr(a) + Pr(b)$

## System failure probability of a '2 out of 3-system' excluding DF

## $Q_s = q_a \cdot q_b + q_a \cdot q_c + q_b \cdot q_c = 3 \cdot Q_1^2$

## 2. Inclusion of DF in system modeling

Probabilities of failure combinations

- *q*<sub>AB</sub>, *q*<sub>BC</sub>, *q*<sub>AC</sub>
- *q*<sub>ABC</sub>

Assumption: equality of all units:

- $q_{AB} = q_{BC} = q_{AC} = \dots = Q_{k=2}$
- $q_{ABC} = Q_{k=3}$

#### '2 out of 3-system'

- Probability of a DF including two units: 3.Q<sub>2</sub>
- Combination of three (all) failures:  $q_{ABC} = Q_3$ .

#### 3. System failure probability

System failure probability  $Q_s$  including DF:

 $Q_s = \Sigma Pr(independent failures) + \Sigma Pr(dependent failures)$ 

**'2 out of 3-system'**  $Q_s = 3 \cdot Q_1^2 + 3 \cdot Q_2 + Q_3.$ 

## Failure probability of the units

 $Q_t$  is the total failure probability of an element in a group of redundant elements, inclusive of all dependencies. The interrelationship between  $Q_t$  and  $Q_k$  is asked for:

$$Q_t = \sum_{k=1}^n \binom{n-1}{k-1} \cdot Q_k$$

with binominal coefficient

$$\binom{n-1}{k-1} \equiv \frac{(n-1)!}{(n-k)! \cdot (k-1)!}$$

Number of failure combinations of an element with (k-1) different elements in a group of (n-1) identical elements.

### Group of 3 redundant elements

$$Q_{t} = \begin{pmatrix} 3 - 1 \\ 1 - 1 \end{pmatrix} \cdot Q_{1} + \begin{pmatrix} 3 - 1 \\ 2 - 1 \end{pmatrix} \cdot Q_{2} + \begin{pmatrix} 3 - 1 \\ 3 - 1 \end{pmatrix} \cdot Q_{3} = Q_{1} + 2 \cdot Q_{2} + Q_{3}$$

## Calculation of $Q_k$ by using relative frequencies

$$\mathbf{Q}_{k} = \frac{n_{k}}{\binom{n}{k}}$$

 $n_k$ : Number of failures with k involved elements and the binominal coefficient for the calculation of the combinations with k of n elements.

### Annotation

Ideally the different  $Q_k$  can be drawn directly from of observation data. Some models simplify the consideration of DF by making additional assumptions.

One of these models is the  $\beta$ -factor-model.

# β-factor-model

## **Simplifying assumptions**

Failures in a group of redundant elements are either independent or all of the *n* elements fail.

- With k = 1,  $Q_{k=1}$  is the failure probability of independent failures
- With k = n,  $Q_{k=n}$  is the failure probability for (totally) dependent failures
- All other failure combination are excluded by definition, so  $Q_k = 0$  for n > k > 1 (for other failure combinations)

For 'm out of n-system' it is generally

$$Q_t = Q_1 + Q_n.$$

Definition of the  $\beta$  -factor

$$\beta = \frac{Number of DF}{Number of all failures}$$

$$\beta = \frac{Q_n}{Q_1 + Q_n} = \frac{Q_n}{Q_t}$$

## From this it follows directly

- $\beta \cdot Q_t = Q_{k=n}$
- $\beta \cdot (\mathbf{Q}_1 + \mathbf{Q}_n) = \mathbf{Q}_{k=n}$
- With  $Q_n = Q_t Q_1$  follows
- $Q_{k=1} = Q_t \left(1 \beta\right)$

## Finally

$$Q_{k} = \begin{cases} (1-\beta) \cdot Q_{t} & k = 1 \\ 0 & m > k > 1 \\ \beta \cdot Q_{t} & k = n \end{cases}$$

## '2 out of 3-system'

System failure probability Changes in the  $\beta$ -factor-model to

$$Q_{s} = 3 \cdot Q_{1}^{2} + 3 \cdot Q_{2} + Q_{3}$$
$$Q_{s} = 3 \cdot (1 - \beta)^{2} \cdot Q_{t}^{2} + \beta \cdot Q_{t}$$

# Multiple-Greek-Letter-Model (MGL-Model)

Assumptions identical to the *b*-factor-model, but combinations of failures are possible

| Parameter, Definitions                                                    | Example: Group of 3 Redundant<br>Elements                              |
|---------------------------------------------------------------------------|------------------------------------------------------------------------|
| $Q_t$ : total failure probability of a unit                               | $Q_t = Q_1 + 2Q_2 + Q_3$                                               |
| $\alpha = 1$                                                              | $\alpha = 1$                                                           |
| $\beta$ : all <i>dependent</i> failure probabilities relating to $Q_t$    | $\beta = \frac{2Q_2 + Q_3}{Q_t} = \frac{2Q_2 + Q_3}{Q_1 + 2Q_2 + Q_3}$ |
| γ: fraction of DF probability of a unit, with at least 2<br>units failing | $\gamma = \frac{Q_3}{2Q_2 + Q_3}$                                      |

To consider the MGL-factors the equation for  $Q_t$  will be solved for  $Q_k$  (k = 1, 2, 3). The resulting terms will be replaced by the parameters  $\beta$ ,  $\gamma$ , etc.

 Example: Group of 3 Redundant Elements
 given:  $Q_t = Q_1 + 2Q_2 + Q_3$ 
 $Q_1 = \frac{Q_t - (2Q_2 + Q_3)}{1} = Q_t - (\beta Q_t) = Q_t (1 - \beta)$   $\beta = \frac{2Q_2 + Q_3}{Q_t} = \frac{2Q_2 + Q_3}{Q_1 + 2Q_2 + Q_3}$ 
 $Q_2 = \frac{Q_t - (Q_1 + Q_3)}{2} = \frac{Q_t - [Q_t (1 - \beta) + \gamma (2Q_2 + Q_3)]}{2}$   $\gamma = \frac{Q_3}{2Q_2 + Q_3}$ 
 $q_3 \dots$  etc.

The results for a redundant group can be generalised by using the notation  $\Phi_1 = 1, \Phi_2 = \beta, \Phi_3 = \gamma, \dots, \Phi_{m+1} = 0$ 

$$\mathbf{Q}_{k} = \frac{1}{\binom{n-1}{k-1}} \cdot \left(\prod_{i=1}^{k} \Phi_{i}\right) \cdot \left(1 - \Phi_{k+1}\right) \cdot \mathbf{Q}_{t}$$

## **Example: Redundant Group with 3 Elements**

$$\begin{aligned} \mathbf{Q}_{k=1} & \mathbf{Q}_{k=2} \\ &= \frac{1}{\binom{3-1}{1-1}} \cdot \left(\Phi_{1}\right) \cdot \left(1-\Phi_{2}\right) \cdot \mathbf{Q}_{t} \end{aligned} = \frac{1}{\binom{3-1}{2-1}} \cdot \left(\Phi_{1} \cdot \Phi_{2}\right) \cdot \left(1-\Phi_{3}\right) \cdot \mathbf{Q}_{t} \end{aligned} = \frac{1}{\binom{3-1}{3-1}} \cdot \left(\Phi_{1} \cdot \Phi_{2} \cdot \Phi_{3}\right) \cdot \left(1-\Phi_{4}\right) \cdot \mathbf{Q}_{t} \end{aligned}$$
$$= \mathbf{1} \cdot \left(1-\beta\right) \cdot \mathbf{Q}_{t} \end{aligned} = \frac{1}{2} \cdot \mathbf{1} \cdot \beta \cdot \left(1-\gamma\right) \cdot \mathbf{Q}_{t} \end{aligned}$$

**Example:** Substituting  $Q_k$  in the equation "System Failure Probability of a 2 out of 3 System  $Q_s$  with DF portion",  $Q_s = 3 + 3 \cdot Q_2 + Q_3$ , equals

$$Q_{s} = 3(1-\beta)^{2} Q_{t}^{2} + \frac{3}{2}\beta(1-\gamma)Q_{t} + \beta\gamma Q_{t}$$

Supposing the MGL-factors are unknown, they can be determined via the respective  $Q_k$  (see above: parameters, definitions). The probabilites can be determined via

$$Q_k = \frac{n_k}{\binom{n}{k}}$$

Equating  $\gamma = 1$  leads to the result of the  $\beta$ -factor-model. In general, the *b*-factor-model is a special case of the MGL-Model

### Common cause initiating event: Seismic Risk Analysis

Classification of initiating events (at plant level, NPP specific)



### Seismic Risk Analysis

Seismic risk analysis of NPP's encompasses the following steps:



Figure from: Landolt-Börnstein VIII - 3 - B: Energy Technologies - Nuclear Energy, 2005, Springer Berlin Heidelberg New York

## 1. Probabilistic Seismic Hazard Analysis (PSHA) - Elements



### 1. Probabilistic Seismic Hazard Analysis (PSHA) - Elements



### 1. Probabilistic Seismic Hazard Analysis (PSHA) – Methodical Background

Application of the total probability theorem:  $v(S \ge s) = \sum_{n} v_n \iint f(n) f(r) P(S \ge s \mid m, r) dm dr$ 

V: mean annual rate of exceedance of acceleration, intensities etc. S>=s at the site

 $V_n$ : mean annual rate of exceedance of magnitudes M>=m of the seismic source

f(m): density function of magnitude (magnitude-recurrence relation)

f(r): density function of distance

 $P(S \ge m,r) = conditional probability of S \ge s (attenuation relation)$ 



## 1. Probabilistic Seismic Hazard Analysis (PSHA) – Logic Tree Approach

epistemic uncertainty: incomplete knowledge (lack of data)

aleatoric uncertainty: inherent randomness of ground motion generation



### 1. Probabilistic Seismic Hazard Analysis (PSHA) – Surface Ground Motion





response spectra

## 2. Structural Analysis



Result of PSHA: KKL CDF: 4.10<sup>-6</sup>/y (total) compared to 1,3.10<sup>-6</sup>/y (total internal)