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s NPP overview

NPP (PWR) Control Room

Containment Structure

+ Based of concept of defense-in-depth
— multiple, redundant, and independent layers of safety systems

* Ifaccident, goal is to lead system in safe conditions
— automatic systems & control room operators
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‘Risk
+ What can go wrong?
» Howlikelyis it?
+ What are the consequences?

2. HOW FREQUENTLY DOES IT HAPPEN?
(SCENARIO FREQUENCY QUANTIFICATION)

5 : Scenario
| Scenario Logic o Frequency
Modeling
1. WHAT CAN GO WRONG? Exelustion
(DEFINITION OF SCENARIOS),
Initiating Event Scenario
e . ;
Selection Development Risk Integration
5| Consequence

Modeling

3. WHAT ARE THE CONSEQUENCES?
(SCENARIO CONSEQUENCE QUANTIFICATION)

Probabilistic Risk Assessment Procedures Guide for NASA managers and Practitioners, Office of Safety and Mission NASA + DC 20546
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ez Probabilistic Safety Assessment

+Approach to risk analysis: Probabilistic Risk/Safety Assessment

« identify the possible accident sequences
« quantify their probabilities and consequences

*PSA is a multilevel analysis technique in respect of the multiple-barrier principle
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Fig. 4: Schematics of a P‘B:LA. analysis
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Event Trees and Fault Trees

Sicherheitsanalytik

* PSA Level 1 framework
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o Classical PSA

+ Classical PSA is a quasi-static approach

 Analysis is based on a few thermal-hydraulic calculations
— Chosen for the most conservative/limiting case by expert

 Limited evaluation of the effects of the variability of system and operator
responses

* In a quasi-static approach is difficult to address:
 Variability of time & variability of strategies = alternative ways of succeeding
 Variability of system response

» Plant effect on crew performance and the vice versa

» Interactions between them l

Dynamic approach!
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*Speed =v

*Classical approach:

* Minimum distance (b) to avoid accident & available time (t,,)?
— Success: at b at v and 100% braking ; )
— Failure: too late or <100% braking or no action = no action

«Dynamic approach:
« What does the pilot do? What does he see? What is his decision?
« What is the distribution of responses? If response, what braking force is selected?

equences

Road conditions
Model calculates the speed at ¢ UL @R

Vehicle type ...
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Dynamic Approach

« Attempt to integrate deterministic and stochastic processes
« Explicitly model the plant-crew interactions
* Give variability to these interactions

 Model the evolution of the operator understanding

1 ]

DDET as a mean for dynamic approach!
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“«.:Pynamic Event Tree — the interacting models

Physical model
- mass, energy, momentum

reach setpoint, Plant

actuate systems \ monitor plant

\
alarms d\‘ \\ indications
generated .

system
initiated

Equipment model

- failure modes

and probabilities
Hardware

A

manual
action
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DDET framework
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i Dynamic Event Tree evolution

*Parameter evolution <DET

Wssure evolution _
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+At each branching point all the parameters
are saved in memory
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Dynamic Event Tree evolution

*Parameter evolution DET

Primary side pressure evolution
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... Laboratorium fiir

Sicherheitsanalytik

Dynamic Event Tree evolution

*Parameter evolution DET

Primary side pressure evolution
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Dynamic Event Tree evolution

*Parameter evolution DET

Primary side pressure evolution
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*wamesz Example DDET construction

Goal: Go to the train station

i

*Many factors will influence the

performance: S B L e\
9 f /i sl 3 :
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"o s Example DDET output
Start cooling
SLOCA R trip att,  CheckSCM Stop HPI1 Stop HPI2 Stop HPI 3
| | 1 |
o s ~20°\ branch 1.%g 52| branch 4 _gos Lo
Stop HPI 2
PHPIZ stopHPI
branch 5 83"
81 sequences
Start \gg  CMeck icm Stop HPI 1 Stop HPI 2
cooling T I
att branch 2 branch 6 I
2 ~55'  ~58 ~79
Stop HPI 2
hlﬁFls Stop HPI 3
100
I ( 200/
o0 PZRlevel / 31 / : Break mass flow
150}
s 80 z
IS =
S 4 = 100
- 40A5ixnsnmymg
20/ 501
Y
o & . LV .- 0V i H
] 30 60 (1h) 30 120 {on) 0 30 60 (1h) 90 120 (2h
Time (min) Time (min)
May 3rd, 2011 17

s Example of case study - SLOCA

*Initiating event Primary side

 Leak with diameter of 1 inch in one of the
primary side cold legs of a three-loop PWR

sz
— the break is not sufficient to depressurize and » @ a
cooldown the primary side
PR
N

J
*Main operators’ actions after reactor ot | B o2
and turbine trips
« Cooldown at 100 K/h through the turbine b*}@* Reamor—‘ *@ i g
bypass valves POy o v b
« Depressurize the system to low pressure — P
conditions s Ko i s oo
+ Maintain the SG levels with the feedwater - sBLOCA W W%‘”:""m"“

SPRV = Spray Valve

pumps =i
Start the PZR sprays to increase PZR level

Stop HPI pumps if enough subcooling margin
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ziSteam Generator level (all sequences)
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ez Scenario Analysis

Primary side pressure

160 120 ‘Subcooling margin
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» Post-simulation tools = identification of failure/success scenarios
+ Frequency of failure based on frequencies of each sequence
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“weczni) Failure probability estimation

» Tool extracts information about the contributors to failure

Late ransier 1o SLOCA Stop PZR spray m3or 8 Late vanster to SLOCA

‘ e sog of WPt ’ ‘ Stog 1 el ‘ ‘ } | Late stop of 1

Steam dump failed

‘ S0 2 ‘
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o Human Reliability Analysis

*HRA model
* study the interactions between humans and systems (NPPs)
* attempt to predict the impact of such interactions on the system reliability
* HRA analyst models and quantifies these interactions (HEPS)

*HRA Example: rush to the train station (A to B)
\ e Diagnosis:

T

— . )
{:ﬂ k\.‘ Should | stay or should | go?
kY
: Executions:
1.Pack your stuff

= 2.Rush to the Polybahn

+ 3.Cross the street to get to Bahnhofbriiche
4.Cross the street to get to Bahnhof
5.Go to the right track

-> Performance Shaping Factors will influence the response!
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“#w=:  DDET to support HRA (SPAR-H)

—Exqluate PSFs for the Diagnosis Portion of the Task, If Any.
PSFs PSF Levels Muitiplier for | Ple]
\ ‘-\ Diagnosis PS|
_

“*r—eInfluence human performance in complex

Available Inadequate time P(failure) = 1.0[]
Time ‘Barely adequate time (=2/3 X nominal) 10 a
‘Nomunal time 1 O 1
T e RS- systems > Performance Shaping Factors
than 30 min)
‘Expansive time (- 2 X nominal and > 30 i) | 001 | (P SFS)
Insufficient information
Stress/ Extreme ]
Stressors High 2 |
Nominal 1 O T - H
it afoaon i 7 sPositive way = low multiplier
Complexity | Highly complex |
Moderately complex 2 a
Nominal 1 ] . . . e
g *Negative way = high multiplier
Insufficient Information 1
Experience/ | Low 10 ]
Training Nominal 1 S
High 05 ]
Insufficient Information 1 |
Procedures Not available 50 [}
omplete 20 0
but poor s ]
1 L
1ptom oriented 05 0
—H HEP = f(PSFS)p;., + f(PSFs)
HMI B 10 [} S Dlag s Exec
i 0
Good 05 a
Insufficient Information 1 |
Fitmess for Unfit P(failure) = 1.0f
Duty Degraded Fitness 5 a
Nomi 1 ]
Insufficient Information 1 m|
Work Poor 2
Processes Nomunal 1 o
Good 08 ]
Insufficient Infonnation 1 m]
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ez |ssues from Scenario Analysis

« Not only the variability of time generates different scenarios
but also:

» Dynamic constraints
— Operators cannot shut down 2 pumps because SCM is low > slow crews

« Different strategies
— Depressurization (fast crews) Vs. maintaining SCM (slow crews)

» Competing goals

— Quick depressurization vs. high SCM vs. high PZR level
— Shut 2 HPI pumps - loss of SCM
— Slowly stop 1 HPI per time = slow depressurization & too high break flow
— Spray long - loss of SCM

May 3rd, 2011 24

12



W Support HRA

+ SLOCA with HPI systems available
— PRA - 80’ to cooldown & 10’ for decision

SPAR-H | Dynamic «Dynamic insights to support PSF evaluation:
L *Competing goals
DIAG. (| 25E-2 ) | 25E-2 «Dynarnic context

«Strategi
EXE. |TUEZ ([5.0E2) e
TOT. |35E-2 |75E2 l

PSF complexity increases!!!

* Classical HRA - diagnosis most important

+ Dynamic - execution most important!!!
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T Other applications...

 Success criteria identification

* A success criterion is a condition that must be verify in order to have the success of

the top event in the event tree
— Based on a few thermal-hydraulic calculations
— Complete spectrum of potential plant response is not addressed

» DDETSs can support a wide spectrum of plant response due to different system and
operator interactions and the edge between success and failure scenarios can be
identified

« Uncertainty analysis

« Probability distributions can be propagated into the DDET to assess the uncertainty
boundaries

* Help Level 2 analysis

May 3rd, 2011 26

13



Take home messages

Dynamic approach is a new research branch to model and
analyze dynamic interactions between plant, automatic
systems, and operators

DDET is a (not “the”) dynamic approach and it is already applied
to accident scenarios analysis and support HRA

DDET approach could be used in PSA for success criteria
identification and uncertainty analysis
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